Symmetry plays an essential role in science - not only in crystallography and quantum theory, where its role has long been explicitly recognized, but also in condensed-matter physics, thermodynamics, chemistry, biology, and others. This text discusses the concept of symmetry and its application to many areas of science. While it includes a detailed introduction to the theory of groups, which forms the mathematical apparatus for describing symmetries, it also includes a much more general discussion of the nature of symmetry and its role in science. Many problems serve to sharpen the reader's understanding, and an extensive bibliography concludes the book.
This book brings together philosophical discussions of symmetry in physics, highlighting the main issues and controversies. It covers all the fundamental symmetries of modern physics, as well as discussing symmetry-breaking and general interpretational issues. For each topic, classic texts are followed by review articles and short commentaries.
This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.
This text focuses on the physics of symmetries, developing symmetries and transformations through concrete physical examples and contexts rather than presenting the information axiomatically, mathematically, and abstractly. Readers are introduced gradually to advanced mathematical procedures, including the Wigner and Racah algebras and their applications to various symmetry groups. The book also includes some of the latest research on the use of non-invariance and non-compact groups in the consideration of relativistic and many-particle problems of atoms and nuclei.This book is an updated replacement for the text Irreducible Tensorial Sets (Academic Press, 1959). Parts A and B of the present book grew out of occasional lectures in the intervening decades at the University of Chicago, where it became neccessary to update or elaborate upon certain points. Part C has been built more recently to deal with innovations and new information in the field of mathematical physics. The book as a whole develops the subject of symmetry from a physical point of view, allowing students and researchers to gain new insight on their subject. This book can be used both as a text and as a reference by students and scientists in the field.Adapts and extends the earlier Irreducible Tensor Sets (Academic Press, 1959) to classroom useExtends to multi-particle systems and relativityIncludes problems in each chapter for homework assignmentsEmbraces the latest research on non-invariance groups
An engaging exploration of beauty in physics, with a foreword by Nobel Prize–winning physicist Roger Penrose The concept of symmetry has widespread manifestations and many diverse applications—from architecture to mathematics to science. Yet, as twentieth-century physics has revealed, symmetry has a special, central role in nature, one that is occasionally and enigmatically violated. Fearful Symmetry brings the incredible discoveries of the juxtaposition of symmetry and asymmetry in contemporary physics within everyone's grasp. A. Zee, a distinguished physicist and skillful expositor, tells the exciting story of how contemporary theoretical physicists are following Einstein in their search for the beauty and simplicity of Nature. Animated by a sense of reverence and whimsy, Fearful Symmetry describes the majestic sweep and accomplishments of twentieth-century physics—one of the greatest chapters in the intellectual history of humankind.
This book is a collection of reviews and essays about the recent developments in the area of Symmetries and applications of Group Theory. Contributions have been written mostly at the graduate level but some are accessible to advanced undergraduates. The book is of interest to a wide audience and covers a broad range of topics with a strong degree of thematical unity. The book is part of a Series of books on Symmetries in Science and may be compared to the published Proceedings of the Colloquia on Group Theoretical Methods in Physics. Here, however, prevails a distinguished character for presenting extended reviews on present applications to Science, not restricted to Theoretical Physics.
When scientists peer through a telescope at the distant stars in outer space or use a particle-accelerator to analyze the smallest components of matter, they discover that the same laws of physics govern the whole universe at all times and all places. Physicists call the eternal, ubiquitous constancy of the laws of physics symmetry. Symmetry is the basic underlying principle that defines the laws of nature and hence controls the universe. This all-important insight is one of the great conceptual breakthroughs in modern physics and is the basis of contemporary efforts to discover a grand unified theory to explain all the laws of physics. Nobel Laureate Leon M. Lederman and physicist Christopher T. Hill explain the supremely elegant concept of symmetry and all its profound ramifications to life on Earth and the universe at large in this eloquent, accessible popular science book. They not only clearly describe concepts normally reserved only for physicists and mathematicians, but they also instill an appreciation for the profound beauty of the universe’s inherent design. Central to the story of symmetry is an obscure, unpretentious, but extremely gifted German mathematician named Emmy Noether. Though still little known to the world, she impressed no less a scientist than Albert Einstein, who praised her "penetrating mathematical thinking." In some of her earliest work she proved that the law of the conservation of energy was connected to the idea of symmetry and thus laid the mathematical groundwork for what may be the most important concept of modern physics. Lederman and Hill reveal concepts about the universe, based on Noether’s work, that are largely unknown to the public and have wide-reaching implications in connection with the Big Bang, Einstein’s theory of relativity, quantum mechanics, and many other areas of physics. Through ingenious analogies and illustrations, they bring these astounding notions to life. This book will open your eyes to a universe you never knew existed.
INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.