This book includes a collection of research and practical papers from international research and technology activities on recent developments in infrastructure engineering. Sustainability is increasingly a key priority in engineering practices. With the aging transportation infrastructure and renewed emphasis on infrastructure renovation by transportation agencies, innovations are urgently needed to develop materials, designs, and practices to ensure the sustainability of transportation infrastructure.
Engineering for Sustainable Communities: Principles and Practices defines and outlines sustainable engineering methods for real-world engineering projects.
Sustainable and resilient critical infrastructure systems is an emerging paradigm in an evolving era of depleting assets in the midst of natural and man-made threats to provide a sustainable and high quality of life with optimized resources from social, economic, societal and environmental considerations. The increasing complexity and interconnectedness of civil and other interdependent infrastructure systems (electric power, energy, cyber-infrastructures, etc.) require inter- and multidisciplinary expertise required to engineer, monitor, and sustain these distributed large-scale complex adaptive infrastructure systems. This edited book is motivated by recent advances in simulation, modeling, sensing, communications/information, and intelligent and sustainable technologies that have resulted in the development of sophisticated methodologies and instruments to design, characterize, optimize, and evaluate critical infrastructure systems, their resilience, and their condition and the factors that cause their deterioration. Specific topics discussed in this book include, but are not limited to: optimal infrastructure investment allocation for sustainability, framework for manifestation of tacit critical infrastructure knowledge, interdependencies between energy and transportation systems for national long term planning, intelligent transportation infrastructure technologies, emergent research issues in infrastructure interdependence research, framework for assessing the resilience of infrastructure and economic systems, maintenance optimization for heterogeneous infrastructure systems, optimal emergency infrastructure inspection scheduling, and sustainable rehabilitation of deteriorated transportation infrastructure systems.
Toward More Sustainable Infrastructure: Project Evaluation for Planners and Engineers provides readers a framework for understanding and evaluating infrastructure projects to improve their performance and sustainability, taking into account not only the financial and economic issues, but also the social and environmental impacts that affect the sustainability of infrastructure. Based on a course designed developed by the author over ten years at M.I.T., this text demonstrates how to apply the basic methods of engineering economics in evaluating major infrastructure projects and also demonstrates how these same techniques can be useful with many routine business and personal decisions. It introduces students to project management, system performance, concepts of sustainability, methods of engineering economics, and provides numerous case studies, examples, and exercises based upon real world problems. This text fills a void in the education of many planners and engineering students, namely an understanding of why major infrastructure projects are undertaken, how they are structured and evaluated, and how they are financed. Toward More Sustainable Infrastructure: Project Evaluation for Planners and Engineers prepares readers to evaluate projects based upon an appreciation of the needs of society, the potential for sustainable development, and recognition of the problems that may result from poorly conceived or poorly implemented projects and programs.
You're overseeing a large-scale project, but you're not an engineering or construction specialist, and so you need an overview of the related sustainability concerns and processes. To introduce you to the main issues, experts from the fields of engineering, planning, public health, environmental design, architecture, and landscape architecture review current sustainable large-scale projects, the roles team members hold, and design approaches, including alternative development and financing structures. They also discuss the challenges and opportunities of sustainability within infrastructural systems, such as those for energy, water, and waste, so that you know what's possible. And best of all, they present here for the first time the Zofnass Environmental Evaluation Methodology guidelines, which will help you and your team improve infrastructure design, engineering, and construction.
Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering. Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. The report identifies five pressing challenges of the 21st century that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.
This book presents 09 keynote and invited lectures and 177 technical papers from the 4th International Conference on Geotechnics for Sustainable Infrastructure Development, held on 28-29 Nov 2019 in Hanoi, Vietnam. The papers come from 35 countries of the five different continents, and are grouped in six conference themes: 1) Deep Foundations; 2) Tunnelling and Underground Spaces; 3) Ground Improvement; 4) Landslide and Erosion; 5) Geotechnical Modelling and Monitoring; and 6) Coastal Foundation Engineering. The keynote lectures are devoted by Prof. Harry Poulos (Australia), Prof. Adam Bezuijen (Belgium), Prof. Delwyn Fredlund (Canada), Prof. Lidija Zdravkovic (UK), Prof. Masaki Kitazume (Japan), and Prof. Mark Randolph (Australia). Four invited lectures are given by Prof. Charles Ng, ISSMGE President, Prof.Eun Chul Shin, ISSMGE Vice-President for Asia, Prof. Norikazu Shimizu (Japan), and Dr.Kenji Mori (Japan).
For the people of the United States, the 20th century was one of unprecedented population growth, economic development, and improved quality of life. The critical infrastructure systems-water, wastewater, power, transportation, and telecommunications-built in the 20th century have become so much a part of modern life that they are taken for granted. By 2030, 60 million more Americans will expect these systems to deliver essential services. Large segments and components of the nation's critical infrastructure systems are now 50 to 100 years old, and their performance and condition are deteriorating. Improvements are clearly necessary. However, approaching infrastructure renewal by continuing to use the same processes, practices, technologies, and materials that were developed in the 20th century will likely yield the same results: increasing instances of service disruptions, higher operating and repair costs, and the possibility of catastrophic, cascading failures. If the nation is to meet some of the important challenges of the 21st century, a new paradigm for the renewal of critical infrastructure systems is needed. This book discusses the essential components of this new paradigm, and outlines a framework to ensure that ongoing activities, knowledge, and technologies can be aligned and leveraged to help meet multiple national objectives.
Collection of selected, peer reviewed papers from the eco-AWAM International Conference on Civil Engineering 2015 (eco-AICCE'15), September 9-11, 2015, Kuala Lumpur, Malaysia.The 114 papers are grouped as follows: Chapter 1: Geotechnical Engineering; Chapter 2: Structural Engineering; Chapter 3: Highway and Transportation Engineering; Chapter 4: Environmental Engineering; Chapter 5: Water Resources Engineering; Chapter 6: Construction Management
A textbook that introduces integrated, sustainable design of urban infrastructures, drawing on civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science. This textbook introduces urban infrastructure from an engineering perspective, with an emphasis on sustainability. Bringing together both fundamental principles and practical knowledge from civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science, the book transcends disciplinary boundaries by viewing urban infrastructures as integrated networks. The text devotes a chapter to each of five engineering systems—electricity, water, transportation, buildings, and solid waste—covering such topics as fundamentals, demand, management, technology, and analytical models. Other chapters present a formal definition of sustainability; discuss population forecasting techniques; offer a history of urban planning, from the Neolithic era to Kevin Lynch and Jane Jacobs; define and discuss urban metabolism and infrastructure integration, reviewing system interdependencies; and describe approaches to urban design that draw on complexity theory, algorithmic models, and machine learning. Throughout, a hypothetical city state, Civitas, is used to explain and illustrate the concepts covered. Each chapter includes working examples and problem sets. An appendix offers tables, diagrams, and conversion factors. The book can be used in advanced undergraduate and graduate courses in civil engineering and as a reference for practitioners. It can also be helpful in preparation for the Fundamentals of Engineering (FE) and Principles and Practice of Engineering (PE) exams.