Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies and Challenges for Woody Crops explores the complex relationship between water scarcity and climate change, agricultural water-use efficiency, crop-water stress management and modeling water scarcity in woody crops. Understanding these cause- and effect relationships and identifying the most appropriate responses are critical for sustainable crop production. The book focuses on Mediterranean environments to explain how to determine the most appropriate strategy and implement an effective plan; however, core concepts are translational to other regions. Informative for those working in agricultural water management, irrigation and drainage, crop physiology and sustainable agriculture. - Focuses on semi-arid crops including olive, vine, citrus, almonds, peach, nectarine, plum, subtropical fruits and others - Explores crop physiological responses to drought at plant, cellular and/or molecular levels - Presents tool options for assessing crop-water status and irrigation scheduling
Irrigation, as the biggest water user in most regions of the world is facing significant challenges in balancing social, economic and environmental needs for water. These proceedings of the 5th International Conference on Sustainable Irrigation and Drainage: Management, Technologies and Policies provide examples of how irrigation and drainage can become more sustainable, while acknowledging that the concept of sustainability is a goal that continues to change as our knowledge of the biophysical realities alters. In that sense moving towards sustainability is an ever evolving journey. A focus is made on the implications for improving sustainability, whether this is drainage, irrigation technologies, economic modelling, governance studies for irrigation management, reuse of water or any other aspect. Topics covered include: Irrigation management; Irrigation modelling; Irrigation systems and planning; Economic incentives; Groundwater issues; Water contamination and remediation; Drainage systems; Drainage modelling; International issues; Water reuse; Climate change effects; Water trade; Economics of irrigation; Socio-economic benefits.
This monograph provides an overview of the principles required for a service orientation in the management of irrigation and drainage systems. The material covered is designed to emphasize an area largely neglected in the irrigation and drainage management literature. The dominating philosophy underlying this book is that irrigation and drainage systems must be managed as a service business responsive to the needs and changing requirements of its customers. It is postulated that this service approach to the management of irrigation and drainage systems consitutes a key element of the startegy that is needed to improve the current level of performance of many irrigation and drainage systems worldwide. Enhanced performance of irrigation is a prerequisite if we are to face the enormous challenge of producing greater quantities of food to meet the demand of a growing population. This is particularly the case in an environment with increasing competition for water from industry and urban water users, set against mounting concerns about environmental sustainability.
This textbook focuses specifically on the combined topics of irrigation and drainage engineering. It emphasizes both basic concepts and practical applications of the latest technologies available. The design of irrigation, pumping, and drainage systems using Excel and Visual Basic for Applications programs are explained for both graduate and undergraduate students and practicing engineers. The book emphasizes environmental protection, economics, and engineering design processes. It includes detailed chapters on irrigation economics, soils, reference evapotranspiration, crop evapotranspiration, pipe flow, pumps, open-channel flow, groundwater, center pivots, turf and landscape, drip, orchards, wheel lines, hand lines, surfaces, greenhouse hydroponics, soil water movement, drainage systems design, drainage and wetlands contaminant fate and transport. It contains summaries, homework problems, and color photos. The book draws from the fields of fluid mechanics, soil physics, hydrology, soil chemistry, economics, and plant sciences to present a broad interdisciplinary view of the fundamental concepts in irrigation and drainage systems design.
This book is about the novel aspects and future trends of the hyperspectral imaging in agriculture, food, and environment. The topics covered by this book are hyperspectral imaging and their applications in the nondestructive quality assessment of fruits and vegetables, hyperspectral imaging for assessing quality and safety of meat, multimode hyperspectral imaging for food quality and safety, models fitting to pattern recognition in hyperspectral images, sequential classification of hyperspectral images, graph construction for hyperspectral data unmixing, target visualization method to process hyperspectral image, and soil contamination mapping with hyperspectral imagery. This book is a general reference work for students, professional engineers, and readers with interest in the subject.
An in-depth review of sustainable concepts in water resources management under climate change Climate change continues to intensify existing pressures in water resources management, such as rapid population growth, land use changes, pollution, damming of rivers, and many others. Securing a reliable water supply—critical for achieving Sustainable Development Goals (SDGs)—requires understanding of the relation between finite water resources, climate variability/change, and various elements of sustainability. Water, Climate Change, and Sustainability is a timely and in-depth examination of the concept of sustainability as it relates to water resources management in the context of climate change risks. Featuring contributions by global authors, this edited volume is organized into three sections: Sustainability Concepts; Sustainability Approaches, Tools, and Techniques; and Sustainability in Practice. Detailed chapters describe the linkage between water and sustainable development, highlight the development and use of new measuring and reporting methods, and discuss the implementation of sustainability concepts in various water use sectors. Topics include localizing and mainstreaming global water sustainability initiatives, resilient water infrastructure for poverty reduction, urban water security for sustainable cities, climate actions and challenges for sustainable ecosystem services, and more. This important resource: Reviews contemporary scientific research and practical applications in the areas of water, climate change and sustainability in different regions of the world Discusses future directions of research and practices in relation to expected patterns of climate changes Covers a wide range of concepts, theories, and perspectives of sustainable development of water resources Features case studies of field and modelling techniques for analyzing water resources and evaluating vulnerability, security, and associated risks Discusses practical applications of water resources in contexts such as food security, global health, clean energy, and climate action Water, Climate Change, and Sustainability is an invaluable resource for policy makers water managers, researchers, and other professionals in the field, and an ideal text for graduate students in hydrogeology, climate change, geophysics, geochemistry, geography, water resources, and environmental science.
Water is critical to all human activities, but access to this crucial resource is increasingly limited by competition and the effects of climate change. In agriculture, water management is key to ensuring good and sustained crop yields, maintaining soil health, and safeguarding the long-term viability of the land. Water management is especially challenging on smallholder farms in resource-poor areas, which tend to be primarily rainfed and thus highly dependent on unreliable rainfall patterns. Sustainable practices can help farmers promote the development of soils, plants and field surfaces to allow maximum retention of water between rains, and encourage the efficient use of each drop of water applied as irrigation. Especially useful for farmers' groups, agricultural extension workers, NGOs, students and researchers working with farmers in dryland areas, this comprehensive yet concise book is a practical and accessible resource for anyone interested in sustainable water management.
This book was designed to be a comprehensive review of selected topics related to irrigation and drainage. Readers will find themes such as salinity control, decision support systems, subsurface drainage, irrigation scheduling in nurseries, irrigation with municipal wastewater, and sustainable drainage systems. These topics and pursuant discussions are expected to be very fruitful in the continuing debate on global food security.