More and more people believe we must quickly wean ourselves from fossil fuels - oil, natural gas and coal - to save the planet from environmental catastrophe, wars and economic collapse. In this 2006 book, Professor Jaccard argues that this view is misguided. We have the technological capability to use fossil fuels without emitting climate-threatening greenhouse gases or other pollutants. The transition from conventional oil and gas to their unconventional sources including coal for producing electricity, hydrogen and cleaner-burning fuels will decrease energy dependence on politically unstable regions. In addition, our vast fossil fuel resources will be the cheapest source of clean energy for the next century and perhaps longer, which is critical for the economic and social development of the world's poorer countries. By buying time for increasing energy efficiency, developing renewable energy technologies and making nuclear power more attractive, fossil fuels will play a key role in humanity's quest for a sustainable energy system.
Evaluates trade-offs and uncertainties inherent in achieving sustainable energy, analyzes the major energy technologies, and provides a framework for assessing policy options.
Energy Sustainability is a subject with many dimensions that spans both production and utilization and how they are linked to sustainable development. More importantly, energy systems are designed, analyzed, assessed and evaluated in accordance to sustainable tools for more sustainable future. This book comprehensively covers these aspects, harmonizing them in a way that offers distinct perspectives for energy, the environment and sustainable development. In addition, it also covers concepts, systems, applications, illustrative examples and case studies that are presented to provide unique coverage for readers. - Presents a holistic approach for energy domains - Includes tactics on the development of sustainability models and parameters to link both energy and sustainable development - Incorporates exergy tools into models and approaches for design, analysis, assessment and evaluations - Includes illustrative examples and case studies with renewables and clean energy options
Energy for Sustainable Development: Demand, Supply, Conversion and Management presents a comprehensive look at recent developments and provides guidance on energy demand, supply, analysis and forecasting of modern energy technologies for sustainable energy conversion. The book analyzes energy management techniques and the economic and environmental impact of energy usage and storage. Including modern theories and the latest technologies used in the conversion of energy for traditional fossil fuels and renewable energy sources, this book provides a valuable reference on recent innovations. Researchers, engineers and policymakers will find this book to be a comprehensive guide on modern theories and technologies for sustainable development.
Brings together disparate conversations about wildlife conservation and renewable energy, suggesting ways these two critical fields can work hand in hand. Renewable energy is often termed simply "green energy," but its effects on wildlife and other forms of biodiversity can be quite complex. While capturing renewable resources like wind, solar, and energy from biomass can require more land than fossil fuel production, potentially displacing wildlife habitat, renewable energy infrastructure can also create habitat and promote species health when thoughtfully implemented. The authors of Renewable Energy and Wildlife Conservation argue that in order to achieve a balanced plan for addressing these two crucially important sustainability issues, our actions at the nexus of these fields must be directed by current scientific information related to the ecological effects of renewable energy production. Synthesizing an extensive, rapidly growing base of research and insights from practitioners into a single, comprehensive resource, contributors to this volume • describe processes to generate renewable energy, focusing on the Big Four renewables—wind, bioenergy, solar energy, and hydroelectric power • review the documented effects of renewable energy production on wildlife and wildlife habitats • consider current and future policy directives, suggesting ways industrial-scale renewables production can be developed to minimize harm to wildlife populations • explain recent advances in renewable power technologies • identify urgent research needs at the intersection of renewables and wildlife conservation Relevant to policy makers and industry professionals—many of whom believe renewables are the best path forward as the world seeks to meet its expanding energy needs—and wildlife conservationists—many of whom are alarmed at the rate of renewables-related habitat conversion—this detailed book culminates with a chapter underscoring emerging opportunities in renewable energy ecology. Contributors: Edward B. Arnett, Brian B. Boroski, Regan Dohm, David Drake, Sarah R. Fritts, Rachel Greene, Steven M. Grodsky, Amanda M. Hale, Cris D. Hein, Rebecca R. Hernandez, Jessica A. Homyack, Henriette I. Jager, Nicole M. Korfanta, James A. Martin, Christopher E. Moorman, Clint Otto, Christine A. Ribic, Susan P. Rupp, Jake Verschuyl, Lindsay M. Wickman, T. Bently Wigley, Victoria H. Zero
The word sustainability shares its root with sustenance. In the context of modern society, sustenance is inextricably linked to the use of energy. Fossil Energy provides an authoritative reference on all aspects of this key resource, which currently represents nearly 85% of global energy consumption. Gathering 16 peer-reviewed entries from the Encyclopedia of Sustainability Science and Technology, the chapters provide comprehensive, yet concise coverage of fundamentals and current areas of research. Written by recognized authorities in the field, this volume represents an essential resource for scientists and engineers working on the development of energy resources, fossil or alternative, and reflects the essential role of energy supplies in supporting a sustainable future.
Despite a 2016-18 glut in fossil fuel markets and decade-low fuel prices, the global transformation to sustainable energy is happening. Our ongoing energy challenges and solutions are complex and multidimensional, involving science, technology, design, economics, finance, planning, policy, politics, and social movements. The most comprehensive book on this topic, Energy for Sustainability has been the go-to resource for courses. This new edition has been thoroughly revised and updated to inform and guide students and practitioners who will steer this transformation. Drawing on a combined 80 years of teaching experience, John Randolph and Gilbert Masters take a holistic and interdisciplinary approach. Energy for Sustainability can help techies and policymakers alike understand the mechanisms required to enable conversion to energy that is clean, affordable, and secure. Major revisions to this edition reflect the current changes in technology and energy use and focus on new analyses, data, and methods necessary to understand and actively participate in the transition to sustainable energy. The book begins with energy literacy, including patterns and trends, before covering the fundamentals of energy related to physics, engineering, and economics. The next parts explore energy technologies and opportunities in three important energy sectors: buildings, electricity, and transportation. The final section focuses on policy and planning, presenting the critical role of public policy and consumer and investor choice in transforming energy markets to greater sustainability. Throughout the book, methods for energy and economic analysis and design give readers a quantitative appreciation for and understanding of energy systems. The book uses case studies extensively to demonstrate current experience and illustrate possibilities.
An easy read, balancing the pros and cons, this book surveys the energy issue from a broad scientific perspective while considering environmental, economic, and social factors. It explains the basic concepts, provides a historical overview of energy resources, assesses our unsustainable energy system based on fossil fuels, and shows that the energy crisis is not only a tough challenge, but also an unprecedented opportunity to become more concerned about the world in which we live and the society we have built up. By outlining the alternatives for today and the future, it gives an extensive overview on nuclear energy, solar thermal and photovoltaics, solar fuels, wind power, ocean energies and other renewables, highlighting the increasing importance of electricity and the long-term perspectives of a hydrogen-based economy. An excellent source of updated and carefully documented information on the entangled aspects of the energy issue, this book is a guide for scientists, students and teachers looking for ways out of the energy and climate crisis, and the problems and disparities generated during the fossil fuel era.
Ending the fossil fuel industry is the only credible path for climate policy Around the world, countries and companies are setting net-zero carbon emissions targets. But what will it mean if those targets are achieved? One possibility is that fossil fuel companies will continue to produce billions of tons of atmospheric CO2 while relying on a symbiotic industry to scrub the air clean. Focusing on emissions draws our attention away from the real problem: the point of production. The fossil fuel industry must come to an end but will not depart willingly; governments must intervene. By embracing a politics of rural-urban coalitions and platform governance, climate advocates can build the political power needed to nationalize the fossil fuel industry and use its resources to draw carbon out of the atmosphere.
Countries around the world are spending up to $500 billion per year on subsidising fossil fuel consumption. By some estimates, the G20 countries alone are spending around another $450 billion on subsidising fossil fuel production. In addition, the indirect social welfare costs of these subsidies have been shown to be substantial – for instance due to air pollution, road congestion, climate change, and economic inefficiency, to name a few. Considering these numbers, there is no doubt that fossil fuel subsidies cause severe economic distortions that compromise countries’ prospects of achieving equitable and sustainable development. This book provides a guide to the complex challenge of designing, assessing, and implementing effective fossil fuel subsidy reforms. It shows that subsidy reform requires a careful balancing of complex economic and political trade-offs, as well as measures to mitigate adverse effects on vulnerable households and to assist firms with implementing efficiency enhancing measures. Going beyond the purely fiscal perspective, this book emphasises that smart subsidy reforms can contribute to all three dimensions of sustainable development – environment, society, and economy. Over the course of eight chapters, this book considers a wide range of agents and stakeholders, markets, and policy measures in order to distil the key principles of designing effective fossil fuel subsidy reforms. This book will be of great relevance to scholars and policy makers with an interest in energy economics and policy, climate change policy, and sustainable development more broadly.