New knowledge, created in international cooperation, is essential for global sustainability. Set against this background, this study focuses on German science policy for research cooperation with developing countries and emerging economies in sustainability research. Based on interviews with policy makers and researchers, the book scrutinizes the actors, processes and contents of science policy in Germany. The author argues that science policy mainly aims at German economic benefits and technology development. This, however, negatively influences global sustainability. To counter existing path dependencies, the author provides recommendations for sustainability-oriented scientific practice and science policy.
Of all the books written about the problems of sustainable development and environmental protection, Sustainable Development: Science, Ethics, and Public Policy is one of the first to examine the role of science, economics and law, and ethics as generally applied to decision making on sustainable development, particularly in respect to the recommendations contained in Agenda 21. Specifically, the book examines the role, capabilities, and certain strengths and weaknesses of these disciplines and their ethical implications in the context of sustainable development problems. Such an analysis is necessary to determine whether sustainable development problems create important new challenges and problems for government so that, where appropriate, new tools or approaches may be designed to overcome limitations or take advantage of the strengths of current scientific, economic and legal capabilities. Audience: Environmental professionals, whether academic, governmental or industrial, or in the private consultancy sector. Also suitable as an upper level text or reference.
This pathbreaking book contributes to the discourse of evidence-based policy-making. It does so by combining the two issues of policy evaluation and sustainable development linking both to the policy-cycle. It covers contributions: · examining the perception of sustainability problems, which analyse the relationship between sustainability and assessment; · highlighting the role of evaluation and impact assessment studies during policy formulation; · looking at policy implementation by examining sustainability and impact assessment systems in different application areas; · addressing policy reformulation presenting monitoring and quality improvement schemes; · discussing quality of sustainability evaluations studies. Providing theoretic insights, reflections and case studies, this novel study will prove essential to postgraduate students, practitioners, policymakers and researchers in the area of sustainable development, policy-making and evaluation.
After the United Nations adopted the 17 Sustainable Development Goals (SDGs) to "end poverty, protect the planet, and ensure prosperity for all," researchers and policy makers highlighted the importance of targeted investment in science, technology, and innovation (STI) to make tangible progress. Science, Technology, and Innovation for Sustainable Development Goals showcases the roles that STI solutions can play in meeting on-the-ground socio-economic and environmental challenges among domestic and international organizations concerned with the SDGs in three overlapping areas: agriculture, health, and environment/energy. Authors and researchers from 31 countries tackle both big-picture questions, such as scaling up the adoption and diffusion of new sustainable technologies, and specific, localized case studies, focusing on developing and middle-income countries and specific STI solutions and policies. Issues addressed include renewable energy, automated vehicles, vaccines, digital health, agricultural biotechnology, and precision agriculture. In bringing together diverse voices from both policy and academic spheres, this volume provides practical and relevant insights and advice to support policy makers and managers seeking to enhance the roles of STI in sustainable development.
Where should the United States focus its long-term efforts to improve the nation's environment? What are the nation's most important environmental issues? What role should science and technology play in addressing these issues? Linking Science and Technology to Society's Environmental Goals provides the current thinking and answers to these questions. Based on input from a range of experts and interested individuals, including representatives of industry, government, academia, environmental organizations, and Native American communities, this book urges policymakers to: Use social science and risk assessment to guide decision-making. Monitor environmental changes in a more thorough, consistent, and coordinated manner. Reduce the adverse impact of chemicals on the environment. Move away from the use of fossil fuels. Adopt an environmental approach to engineering that reduces the use of natural resources. Substantially increase our understanding of the relationship between population and consumption. This book will be of special interest to policymakers in government and industry; environmental scientists, engineers, and advocates; and faculty, students, and researchers.
This open access book discusses how the involvement of citizens into scientific endeavors is expected to contribute to solve the big challenges of our time, such as climate change and the loss of biodiversity, growing inequalities within and between societies, and the sustainability turn. The field of citizen science has been growing in recent decades. Many different stakeholders from scientists to citizens and from policy makers to environmental organisations have been involved in its practice. In addition, many scientists also study citizen science as a research approach and as a way for science and society to interact and collaborate. This book provides a representation of the practices as well as scientific and societal outcomes in different disciplines. It reflects the contribution of citizen science to societal development, education, or innovation and provides and overview of the field of actors as well as on tools and guidelines. It serves as an introduction for anyone who wants to get involved in and learn more about the science of citizen science.
This report contains a collection of papers from a workshopâ€"Strengthening Science-Based Decision-Making for Sustainable Management of Scarce Water Resources for Agricultural Production, held in Tunisia. Participants, including scientists, decision makers, representatives of non-profit organizations, and a farmer, came from the United States and several countries in North Africa and the Middle East. The papers examined constraints to agricultural production as it relates to water scarcity; focusing on 1) the state of the science regarding water management for agricultural purposes in the Middle East and North Africa 2) how science can be applied to better manage existing water supplies to optimize the domestic production of food and fiber. The cross-cutting themes of the workshop were the elements or principles of science-based decision making, the role of the scientific community in ensuring that science is an integral part of the decision making process, and ways to improve communications between scientists and decision makers.
Sustainability is based on a simple and long-recognized factual premise: Everything that humans require for their survival and well-being depends, directly or indirectly, on the natural environment. The environment provides the air we breathe, the water we drink, and the food we eat. Recognizing the importance of sustainability to its work, the U.S. Environmental Protection Agency (EPA) has been working to create programs and applications in a variety of areas to better incorporate sustainability into decision-making at the agency. To further strengthen the scientific basis for sustainability as it applies to human health and environmental protection, the EPA asked the National Research Council (NRC) to provide a framework for incorporating sustainability into the EPA's principles and decision-making. This framework, Sustainability and the U.S. EPA, provides recommendations for a sustainability approach that both incorporates and goes beyond an approach based on assessing and managing the risks posed by pollutants that has largely shaped environmental policy since the 1980s. Although risk-based methods have led to many successes and remain important tools, the report concludes that they are not adequate to address many of the complex problems that put current and future generations at risk, such as depletion of natural resources, climate change, and loss of biodiversity. Moreover, sophisticated tools are increasingly available to address cross-cutting, complex, and challenging issues that go beyond risk management. The report recommends that EPA formally adopt as its sustainability paradigm the widely used "three pillars" approach, which means considering the environmental, social, and economic impacts of an action or decision. Health should be expressly included in the "social" pillar. EPA should also articulate its vision for sustainability and develop a set of sustainability principles that would underlie all agency policies and programs.
Methods in Sustainability Science: Assessment, Prioritization, Improvement, Design and Optimization presents cutting edge, detailed methodologies needed to create sustainable growth in any field or industry, including life cycle assessments, building design, and energy systems. The book utilized a systematic structured approach to each of the methodologies described in an interdisciplinary way to ensure the methodologies are applicable in the real world, including case studies to demonstrate the methods. The chapters are written by a global team of authors in a variety of sustainability related fields. Methods in Sustainability Science: Assessment, Prioritization, Improvement, Design and Optimization will provide academics, researchers and practitioners in sustainability, especially environmental science and environmental engineering, with the most recent methodologies needed to maintain a sustainable future. It is also a necessary read for postgraduates in sustainability, as well as academics and researchers in energy and chemical engineering who need to ensure their industrial methodologies are sustainable. - Provides a comprehensive overview of the most recent methodologies in sustainability assessment, prioritization, improvement, design and optimization - Sections are organized in a systematic and logical way to clearly present the most recent methodologies for sustainability and the chapters utilize an interdisciplinary approach that covers all considerations of sustainability - Includes detailed case studies demonstrating the efficacies of the described methods