Surveys in Combinatorics 2003

Surveys in Combinatorics 2003

Author: C. D. Wensley

Publisher: Cambridge University Press

Published: 2003-07-24

Total Pages: 382

ISBN-13: 9780521540124

DOWNLOAD EBOOK

The British Combinatorial Conference is held every two years and is a key event for mathematicians worldwide working in combinatorics. In June 2003 the conference was held at the University of Wales, Bangor. The papers contained here are surveys contributed by the invited speakers and are of the high quality that befits the event. There is also a tribute to Bill Tutte who had a long-standing association with the BCC. The papers cover topics currently attracting significant research interest as well as some less traditional areas such as the combinatorics of protecting digital content. They will form an excellent resource for established researchers as well as graduate students who will find much here to inspire future work.


Groups St Andrews 2001 in Oxford: Volume 1

Groups St Andrews 2001 in Oxford: Volume 1

Author: C. M. Campbell

Publisher: Cambridge University Press

Published: 2003-11-06

Total Pages: 316

ISBN-13: 9781139437219

DOWNLOAD EBOOK

This first volume of the two-volume book contains selected papers from the international conference 'Groups St Andrews 2001 in Oxford' which was held at the University of Oxford in August 2001. Five main lecture courses were given at the conference, and articles based on their lectures form a substantial part of the Proceedings. This volume contains the contributions from Marston Conder (Auckland), Persi Diaconis (Stanford) and Marcus Du Sautoy (Cambridge). The series of Proceedings of Groups St Andrews conferences have provided snapshots of the state of research in group theory throughout the past twenty years. As with earlier volumes, these refereed volumes also contain accessible surveys of contemporary research fronts, as well as a diverse collection of short research articles. They form a valuable reference for researchers, especially graduate students, working in group theory.


Groups St Andrews 2001 in Oxford: Volume 2

Groups St Andrews 2001 in Oxford: Volume 2

Author: C. M. Campbell

Publisher: Cambridge University Press

Published: 2003-11-06

Total Pages: 320

ISBN-13: 9780521537407

DOWNLOAD EBOOK

This second volume of the two-volume book contains selected papers from the conference 'Groups St Andrews 2001 in Oxford'. The articles are contributed by a number of leading researchers and cover a wide spectrum of modern group theory. There are articles based on lecture courses given by five main speakers together with refereed survey and research articles. The 'Groups St Andrews' proceedings volumes are a snapshot of the state of the art in group theory and they often play an important role in future developments in the subject.


Higher Operads, Higher Categories

Higher Operads, Higher Categories

Author: Tom Leinster

Publisher: Cambridge University Press

Published: 2004-07-22

Total Pages: 451

ISBN-13: 0521532159

DOWNLOAD EBOOK

Foundations of higher dimensional category theory for graduate students and researchers in mathematics and mathematical physics.


Fundamentals of Hyperbolic Manifolds

Fundamentals of Hyperbolic Manifolds

Author: R. D. Canary

Publisher: Cambridge University Press

Published: 2006-04-13

Total Pages: 356

ISBN-13: 9781139447195

DOWNLOAD EBOOK

Presents reissued articles from two classic sources on hyperbolic manifolds. Part I is an exposition of Chapters 8 and 9 of Thurston's pioneering Princeton Notes; there is a new introduction describing recent advances, with an up-to-date bibliography, giving a contemporary context in which the work can be set. Part II expounds the theory of convex hull boundaries and their bending laminations. A new appendix describes recent work. Part III is Thurston's famous paper that presents the notion of earthquakes in hyperbolic geometry and proves the earthquake theorem. The final part introduces the theory of measures on the limit set, drawing attention to related ergodic theory and the exponent of convergence. The book will be welcomed by graduate students and professional mathematicians who want a rigorous introduction to some basic tools essential for the modern theory of hyperbolic manifolds.


General Theory of Lie Groupoids and Lie Algebroids

General Theory of Lie Groupoids and Lie Algebroids

Author: Kirill C. H. Mackenzie

Publisher: Cambridge University Press

Published: 2005-06-09

Total Pages: 540

ISBN-13: 0521499283

DOWNLOAD EBOOK

This a comprehensive modern account of the theory of Lie groupoids and Lie algebroids, and their importance in differential geometry, in particular their relations with Poisson geometry andgeneral connection theory. It covers much work done since the mid 1980s including the first treatment in book form of Poisson groupoids, Lie bialgebroids and double vector bundles. As such, this book will be of great interest to all those working in or wishing to learn the modern theory of Lie groupoids and Lie algebroids.


Geometric Mechanics and Symmetry

Geometric Mechanics and Symmetry

Author: James Montaldi

Publisher: Cambridge University Press

Published: 2005-05-05

Total Pages: 416

ISBN-13: 9780521539579

DOWNLOAD EBOOK

The lectures in this 2005 book are intended to bring young researchers to the current frontier of knowledge in geometrical mechanics and dynamical systems.


Automorphic Forms and Galois Representations: Volume 1

Automorphic Forms and Galois Representations: Volume 1

Author: Fred Diamond

Publisher: Cambridge University Press

Published: 2014-10-16

Total Pages: 385

ISBN-13: 1316062333

DOWNLOAD EBOOK

Automorphic forms and Galois representations have played a central role in the development of modern number theory, with the former coming to prominence via the celebrated Langlands program and Wiles' proof of Fermat's Last Theorem. This two-volume collection arose from the 94th LMS-EPSRC Durham Symposium on 'Automorphic Forms and Galois Representations' in July 2011, the aim of which was to explore recent developments in this area. The expository articles and research papers across the two volumes reflect recent interest in p-adic methods in number theory and representation theory, as well as recent progress on topics from anabelian geometry to p-adic Hodge theory and the Langlands program. The topics covered in volume one include the Shafarevich Conjecture, effective local Langlands correspondence, p-adic L-functions, the fundamental lemma, and other topics of contemporary interest.