Surplus Analysis of Sparre Andersen Insurance Risk Processes

Surplus Analysis of Sparre Andersen Insurance Risk Processes

Author: Gordon E. Willmot

Publisher: Springer

Published: 2017-12-21

Total Pages: 228

ISBN-13: 3319713620

DOWNLOAD EBOOK

This carefully written monograph covers the Sparre Andersen process in an actuarial context using the renewal process as the model for claim counts. A unified reference on Sparre Andersen (renewal risk) processes is included, often missing from existing literature. The authors explore recent results and analyse various risk theoretic quantities associated with the event of ruin, including the time of ruin and the deficit of ruin. Particular attention is given to the explicit identification of defective renewal equation components, which are needed to analyse various risk theoretic quantities and are also relevant in other subject areas of applied probability such as dams and storage processes, as well as queuing theory. Aimed at researchers interested in risk/ruin theory and related areas, this work will also appeal to graduate students in classical and modern risk theory and Gerber-Shiu analysis.


Risk Measures and Insurance Solvency Benchmarks

Risk Measures and Insurance Solvency Benchmarks

Author: Vsevolod K. Malinovskii

Publisher: CRC Press

Published: 2021-07-22

Total Pages: 340

ISBN-13: 1000411079

DOWNLOAD EBOOK

Risk Measures and Insurance Solvency Benchmarks: Fixed-Probability Levels in Renewal Risk Models is written for academics and practitioners who are concerned about potential weaknesses of the Solvency II regulatory system. It is also intended for readers who are interested in pure and applied probability, have a taste for classical and asymptotic analysis, and are motivated to delve into rather intensive calculations. The formal prerequisite for this book is a good background in analysis. The desired prerequisite is some degree of probability training, but someone with knowledge of the classical real-variable theory, including asymptotic methods, will also find this book interesting. For those who find the proofs too complicated, it may be reassuring that most results in this book are formulated in rather elementary terms. This book can also be used as reading material for basic courses in risk measures, insurance mathematics, and applied probability. The material of this book was partly used by the author for his courses in several universities in Moscow, Copenhagen University, and in the University of Montreal. Features Requires only minimal mathematical prerequisites in analysis and probability Suitable for researchers and postgraduate students in related fields Could be used as a supplement to courses in risk measures, insurance mathematics and applied probability.


The Cramér–Lundberg Model and Its Variants

The Cramér–Lundberg Model and Its Variants

Author: Michel Mandjes

Publisher: Springer Nature

Published: 2023-12-29

Total Pages: 252

ISBN-13: 3031391055

DOWNLOAD EBOOK

This book offers a comprehensive examination of the Cramér–Lundberg model, which is the most extensively researched model in ruin theory. It covers the fundamental dynamics of an insurance company's surplus level in great detail, presenting a thorough analysis of the ruin probability and related measures for both the standard model and its variants. Providing a systematic and self-contained approach to evaluate the crucial quantities found in the Cramér–Lundberg model, the book makes use of connections with related queueing models when appropriate, and its emphasis on clean transform-based techniques sets it apart from other works. In addition to consolidating a wealth of existing results, the book also derives several new outcomes using the same methodology. This material is complemented by a thoughtfully chosen collection of exercises. The book's primary target audience is master's and starting PhD students in applied mathematics, operations research, and actuarial science, although it also serves as a useful methodological resource for more advanced researchers. The material is self-contained, requiring only a basic grounding in probability theory and some knowledge of transform techniques.


Closure Properties for Heavy-Tailed and Related Distributions

Closure Properties for Heavy-Tailed and Related Distributions

Author: Remigijus Leipus

Publisher: Springer Nature

Published: 2023-10-16

Total Pages: 99

ISBN-13: 3031345533

DOWNLOAD EBOOK

This book provides a compact and systematic overview of closure properties of heavy-tailed and related distributions, including closure under tail equivalence, convolution, finite mixing, maximum, minimum, convolution power and convolution roots, and product-convolution closure. It includes examples and counterexamples that give an insight into the theory and provides numerous references to technical details and proofs for a deeper study of the subject. The book will serve as a useful reference for graduate students, young researchers, and applied scientists.


Encyclopedia of Quantitative Risk Analysis and Assessment

Encyclopedia of Quantitative Risk Analysis and Assessment

Author:

Publisher: John Wiley & Sons

Published: 2008-09-02

Total Pages: 2163

ISBN-13: 0470035498

DOWNLOAD EBOOK

Leading the way in this field, the Encyclopedia of Quantitative Risk Analysis and Assessment is the first publication to offer a modern, comprehensive and in-depth resource to the huge variety of disciplines involved. A truly international work, its coverage ranges across risk issues pertinent to life scientists, engineers, policy makers, healthcare professionals, the finance industry, the military and practising statisticians. Drawing on the expertise of world-renowned authors and editors in this field this title provides up-to-date material on drug safety, investment theory, public policy applications, transportation safety, public perception of risk, epidemiological risk, national defence and security, critical infrastructure, and program management. This major publication is easily accessible for all those involved in the field of risk assessment and analysis. For ease-of-use it is available in print and online.


Modern Problems of Stochastic Analysis and Statistics

Modern Problems of Stochastic Analysis and Statistics

Author: Vladimir Panov

Publisher: Springer

Published: 2017-11-21

Total Pages: 506

ISBN-13: 331965313X

DOWNLOAD EBOOK

This book brings together the latest findings in the area of stochastic analysis and statistics. The individual chapters cover a wide range of topics from limit theorems, Markov processes, nonparametric methods, acturial science, population dynamics, and many others. The volume is dedicated to Valentin Konakov, head of the International Laboratory of Stochastic Analysis and its Applications on the occasion of his 70th birthday. Contributions were prepared by the participants of the international conference of the international conference “Modern problems of stochastic analysis and statistics”, held at the Higher School of Economics in Moscow from May 29 - June 2, 2016. It offers a valuable reference resource for researchers and graduate students interested in modern stochastics.


Ruin Probabilities (2nd Edition)

Ruin Probabilities (2nd Edition)

Author: Soren Asmussen

Publisher: World Scientific

Published: 2010-09-09

Total Pages: 621

ISBN-13: 9814466921

DOWNLOAD EBOOK

The book gives a comprehensive treatment of the classical and modern ruin probability theory. Some of the topics are Lundberg's inequality, the Cramér-Lundberg approximation, exact solutions, other approximations (e.g., for heavy-tailed claim size distributions), finite horizon ruin probabilities, extensions of the classical compound Poisson model to allow for reserve-dependent premiums, Markov-modulation, periodicity, change of measure techniques, phase-type distributions as a computational vehicle and the connection to other applied probability areas, like queueing theory. In this substantially updated and extended second version, new topics include stochastic control, fluctuation theory for Levy processes, Gerber-Shiu functions and dependence.


Lectures on Insurance Models

Lectures on Insurance Models

Author: S. Ramasubramanian

Publisher: Springer

Published: 2009-04-15

Total Pages: 212

ISBN-13: 9386279444

DOWNLOAD EBOOK

Insurance has become a necessary aspect of modern society. The mathematical basis of insurance modeling is best expressed in terms of continuous time stochastic processes. This introductory text on actuarial risk theory deals with the Cramer-Lundberg model and the renewal risk model. Their basic structure and properties, including the renewal theorems as well as the corresponding ruin problems, are studied. There is a detailed discussion of heavy tailed distributions, which have become increasingly relevant. The Lundberg risk process with investment in risky asset is also considered. This book will be useful to practitioners in the field and to graduate students interested in this important branch of applied probability.


Stochastic Processes

Stochastic Processes

Author: Alexander Zeifman

Publisher: MDPI

Published: 2019-12-12

Total Pages: 216

ISBN-13: 3039219626

DOWNLOAD EBOOK

The aim of this special issue is to publish original research papers that cover recent advances in the theory and application of stochastic processes. There is especial focus on applications of stochastic processes as models of dynamic phenomena in various research areas, such as queuing theory, physics, biology, economics, medicine, reliability theory, and financial mathematics. Potential topics include, but are not limited to: Markov chains and processes; large deviations and limit theorems; random motions; stochastic biological model; reliability, availability, maintenance, inspection; queueing models; queueing network models; computational methods for stochastic models; applications to risk theory, insurance and mathematical finance.