Surface Passivation of Industrial Crystalline Silicon Solar Cells

Surface Passivation of Industrial Crystalline Silicon Solar Cells

Author: Joachim John

Publisher: Institution of Engineering and Technology

Published: 2018-11-15

Total Pages: 289

ISBN-13: 1785612468

DOWNLOAD EBOOK

Surface passivation of silicon solar cells describes a technology for preventing electrons and holes to recombine prematurely with one another on the wafer surface. It increases the cell's energy conversion efficiencies and thus reduces the cost per kWh generated by a PV system.


Silicon Heterojunction Solar Cells

Silicon Heterojunction Solar Cells

Author: W.R. Fahrner

Publisher: Trans Tech Publications Ltd

Published: 2006-08-15

Total Pages: 204

ISBN-13: 3038131024

DOWNLOAD EBOOK

The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made to reduce the production costs of “conventional” solar cells (manufactured from monocrystalline silicon using diffusion methods) by instead using cheaper grades of silicon, and simpler pn-junction fabrication. That is the ‘hero’ of this book; the heterojunction solar cell.


High Efficiency Silicon Solar Cells

High Efficiency Silicon Solar Cells

Author: Martin A. Green

Publisher: Trans Tech Publications Ltd

Published: 1987-01-01

Total Pages: 237

ISBN-13: 3035739641

DOWNLOAD EBOOK

The early chapters comprehensively review the optical and transport properties of silicon. Light trapping is described in detail. Limits on the efficiency of silicon cells are discussed as well as material requirements necessary to approach these limits. The status of current approaches to passifying surfaces, contacts and bulk regions is reviewed. The final section of the book describes the most practical approaches to the fabrication of high-efficiency cells capable of meeting the efficiency targets for both concentrated and non-concentrated sunlight, including a discussion of design and processing approaches for non-crystalline silicon.


Photovoltaic Manufacturing

Photovoltaic Manufacturing

Author: Monika Freunek Muller

Publisher: John Wiley & Sons

Published: 2021-08-16

Total Pages: 154

ISBN-13: 1119242010

DOWNLOAD EBOOK

PHOTOVOLTAIC MANUFACTURING This book covers the state-of-the-art and the fundamentals of silicon wafer solar cells manufacturing, written by world-class researchers and experts in the field. High quality and economic photovoltaic manufacturing is central to realizing reliable photovoltaic power supplies at reasonable cost. While photovoltaic silicon wafer manufacturing is at a mature, industrial and mass production stage, knowing and applying the fundamentals in solar manufacturing is essential to anyone working in this field. This is the first book on photovoltaic wet processing for silicon wafers, both mono- and multi-crystalline. The comprehensive book provides information for process, equipment, and device engineers and researchers in the solar manufacturing field. The authors of the chapters are world-class researchers and experts in their field of endeavor. The fundamentals of wet processing chemistry are introduced, covering etching, texturing, cleaning and metrology. New developments, innovative approaches, as well as current challenges are presented. Benefits of reading the book include: The book includes a detailed discussion of the important new development of black silicon, which is considered to have started a new wave in photovoltaics and become the new standard while substantially lowering the cost. Photovoltaics are central to any country’s “New Green Deal” and this book shows how to manufacture competitively. The book’s central goal is to show photovoltaic manufacturing can be done with enhanced quality and lowering costs. Audience Engineers, chemists, physicists, process technologists, in both academia and industry, that work with photovoltaics and their manufacture.


Green Energy

Green Energy

Author: Suman Lata Tripathi

Publisher: John Wiley & Sons

Published: 2021-02-17

Total Pages: 640

ISBN-13: 1119760763

DOWNLOAD EBOOK

Like most industries around the world, the energy industry has also made, and continues to make, a long march toward “green” energy. The science has come a long way since the 1970s, and renewable energy and other green technologies are becoming more and more common, replacing fossil fuels. It is, however, still a struggle, both in terms of energy sources keeping up with demand, and the development of useful technologies in this area. To maintain the supply for electrical energy, researchers, engineers and other professionals in industry are continuously exploring new eco-friendly energy technologies and power electronics, such as solar, wind, tidal, wave, bioenergy, and fuel cells. These technologies have changed the concepts of thermal, hydro and nuclear energy resources by the adaption of power electronics advancement and revolutionary development in lower manufacturing cost for semiconductors with long time reliability. The latest developments in renewable resources have proved their potential to boost the economy of any country. Green energy technology has not only proved the concept of clean energy but also reduces the dependencies on fossil fuel for electricity generation through smart power electronics integration. Also, endless resources have more potential to cope with the requirements of smart building and smart city concepts. A valuable reference for engineers, scientists, chemists, and students, this volume is applicable to many different fields, across many different industries, at all levels. It is a must-have for any library.


Thin Film Solar Cells

Thin Film Solar Cells

Author: Jef Poortmans

Publisher: John Wiley & Sons

Published: 2006-10-16

Total Pages: 504

ISBN-13: 0470091266

DOWNLOAD EBOOK

Thin-film solar cells are either emerging or about to emerge from the research laboratory to become commercially available devices finding practical various applications. Currently no textbook outlining the basic theoretical background, methods of fabrication and applications currently exist. Thus, this book aims to present for the first time an in-depth overview of this topic covering a broad range of thin-film solar cell technologies including both organic and inorganic materials, presented in a systematic fashion, by the scientific leaders in the respective domains. It covers a broad range of related topics, from physical principles to design, fabrication, characterization, and applications of novel photovoltaic devices.


Thin-Film Silicon Solar Cells

Thin-Film Silicon Solar Cells

Author: Arvind Shah

Publisher: EPFL Press

Published: 2010-08-19

Total Pages: 472

ISBN-13: 9781420066746

DOWNLOAD EBOOK

Photovoltaic technology has now developed to the extent that it is close to fulfilling the vision of a "solar-energy world," as devices based on this technology are becoming efficient, low-cost and durable. This book provides a comprehensive treatment of thin-film silicon, a prevalent PV material, in terms of its semiconductor nature, starting out with the physical properties, but concentrating on device applications. A special emphasis is given to amorphous silicon and microcrystalline silicon as photovoltaic materials, along with a model that allows these systems to be physically described in the simplest manner possible, thus allowing the student or scientist/engineer entering the field of thin-film electronics to master a few basic concepts that are distinct from those in the field of conventional semiconductors. The main part of the book deals with solar cells and modules by illustrating the basic functioning of these devices, along with their limitations, design optimization, testing and fabrication methods. Among the manufacturing processes discussed are plasma-assisted and hot-wire deposition, sputtering, and structuring techniques.


Nanostructured Solar Cells

Nanostructured Solar Cells

Author: Narottam Das

Publisher: BoD – Books on Demand

Published: 2017-02-22

Total Pages: 316

ISBN-13: 953512935X

DOWNLOAD EBOOK

Nanostructured solar cells are very important in renewable energy sector as well as in environmental aspects, because it is environment friendly. The nano-grating structures (such as triangular or conical shaped) have a gradual change in refractive index which acts as a multilayer antireflective coating that is leading to reduced light reflection losses over broadband ranges of wavelength and angle of incidence. There are different types of losses in solar cells that always reduce the conversion efficiency, but the light reflection loss is the most important factor that decreases the conversion efficiency of solar cells significantly. The antireflective coating is an optical coating which is applied to the surface of lenses or any optical devices to reduce the light reflection losses. This coating assists for the light trapping capturing capacity or improves the efficiency of optical devices, such as lenses or solar cells. Hence, the multilayer antireflective coatings can reduce the light reflection losses and increases the conversion efficiency of nanostructured solar cells.


Printed Electronics

Printed Electronics

Author: Ilgu Yun

Publisher: Intechopen

Published: 2016-09-28

Total Pages: 150

ISBN-13: 9535123017

DOWNLOAD EBOOK

This book contains a collection of latest research developments on the printed electronics from the material-related various processes to the interdisciplinary device applications. It is a promising new research area that has received a lot of highlights for low-cost and high-volume manufacturing in recent years. Here, you will find interesting reports on currently progressed science- and technology-related materials, fabrication processes, and various recent applications, including organic/inorganic semiconductor, textile, and biomedical engineering for the printed electronics. I hope that the book will provide the fundamental backgrounds of printed electronics to lead you for the creation of new research field and further promotion of future technology of the printed electronics.