This book covers 10 surface characterization techniques divided into three sections. The first section covers the theoretical background, instrumentation and their salient features and a general understanding behind the results. The second section delves into deeper discussion of every terminology and concept. The third section is composed of 5 sets of examples from different research papers for every technique.
"Outlines the scientific basis and experimental methods for a broad sample of surface analysis techniques, drawing heavily from established principles of physical and analytical chemistry. Sketches a simple low-cost method of tracking particles in three dimensions."
This book covers state-of-the-art techniques commonly used in modern materials characterization. Two important aspects of characterization, materials structures and chemical analysis, are included. Widely used techniques, such as metallography (light microscopy), X-ray diffraction, transmission and scanning electron microscopy, are described. In addition, the book introduces advanced techniques, including scanning probe microscopy. The second half of the book accordingly presents techniques such as X-ray energy dispersive spectroscopy (commonly equipped in the scanning electron microscope), fluorescence X-ray spectroscopy, and popular surface analysis techniques (XPS and SIMS). Finally, vibrational spectroscopy (FTIR and Raman) and thermal analysis are also covered.
Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. - Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques - Reviews the determination of microstructural and mechanical properties - Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries - Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials
The structure of a growth or an etch front on a surface is not only a subject of great interest from the practical point of view but also is of fundamental scientific interest. Very often surfaces are created under non-equilibrium conditions such that the morphology is not always smooth. In addition to a detailed description of the characteristics of random rough surfaces, Experimental Methods in the Physical Sciences, Volume 37, Characterization of Amorphous and Crystalline Rough Surface-Principles and Applications will focus on the basic principles of real and diffraction techniques for quantitative characterization of the rough surfaces. The book thus includes the latest development on the characterization and measurements of a wide variety of rough surfaces. The complementary nature of the real space and diffraction techniques is fully displayed.Key Features* An accessible description of quantitative characterization of random rough surfaces and growth/etch fronts* A detailed description of the principles, experimentation, and limitations of advanced real-space imaging techniques (such as atomic force microscopy) and diffraction techniques (such as light scattering, X-ray diffraction, and electron diffraction)* Characterization of a variety of rough surfaces (e.g., self-affine, mounded, anisotropic, and two-level surfaces) accompanied by quantitative examples to illustrate the essence of the principles* An insightful description of how rough surfaces are formed* Presentation of the most recent examples of the applications of rough surfaces in various areas
Develop a Greater Understanding of How and Why Surface Wave Testing Works Using examples and case studies directly drawn from the authors’ experience, Surface Wave Methods for Near-Surface Site Characterization addresses both the experimental and theoretical aspects of surface wave propagation in both forward and inverse modeling. This book accents the key facets associated with surface wave testing for near-surface site characterization. It clearly outlines the basic principles, the theoretical framework and the practical implementation of surface wave analysis. In addition, it also describes in detail the equipment and measuring devices, acquisition techniques, signal processing, forward and inverse modeling theories, and testing protocols that form the basis of modern surface wave techniques. Review Examples of Typical Applications for This Geophysical Technique Divided into eight chapters, the book explains surface wave testing principles from data measurement to interpretation. It effectively integrates several examples and case studies illustrating how different ground conditions and geological settings may influence the interpretation of data measurements. The authors accurately describe each phase of testing in addition to the guidelines for correctly performing and interpreting results. They present variants of the test within a consistent framework to facilitate comparisons, and include an in-depth discussion of the uncertainties arising at each stage of surface wave testing. Provides a comprehensive and in-depth treatment of all the steps involved in surface wave testing Discusses surface wave methods and their applications in various geotechnical conditions and geological settings Explains how surface wave measurements can be used to estimate both stiffness and dissipative properties of the ground Addresses the issue of uncertainty, which is often an overlooked problem in surface wave testing Includes examples with comparative analysis using different processing techniques and inversion algorithms Outlines advanced applications of surface wave testing such as joint inversion, underwater investigation, and Love wave analysis Written for geotechnical engineers, engineering seismologists, geophysicists, and researchers, Surface Wave Methods for Near-Surface Site Characterization offers practical guidance, and presents a thorough understanding of the basic concepts.
TRIBOLOGY AND CHARACTERIZATION OF SURFACE COATINGS The book provides updated information on the friction and wear behavior of coatings used in various industrial applications. Surface modification is a cost-effective process of increasing the life of components so that the whole device need not be changed if the surface is worn out. The tribological behavior of biological implants is currently an active topic and a thorough discussion is one of the book’s features. Tribology and Characterization of Surface Coatings explores key issues which are important in the research and development of surface coatings by providing updated information on friction and wear behavior of coatings used in different industrial applications. It covers the various coating deposition techniques, tribological response of nanocomposite coatings, multilayer hardfacing, and wear testing methods for coatings at nanoscale. The use of nanostructures may alter the tribological, characterization, and mechanical properties of the materials. Thermal spraying is the most widely used technique in industry for the deposition of coatings and their tribological properties need to be determined. This book also includes the recent trends in biotribology and the materials used in implants to counter the abrasive wear. Audience The book will serve as a reference to researchers, scientists, academicians, industrial engineers, and students who work in the fields of materials/polymer science and mechanical engineering. Apart from their applications to aerospace and electronics industries, the coatings are also used in the field of biomedical engineering.
Until comparatively recently, trace analysis techniques were in general directed toward the determination of impurities in bulk materials. Methods were developed for very high relative sensitivity, and the values determined were average values. Sampling procedures were devised which eliminated the so-called sampling error. However, in the last decade or so, a number of developments have shown that, for many purposes, the distribution of defects within a material can confer important new properties on the material. Perhaps the most striking example of this is given by semiconductors; a whole new industry has emerged in barely twenty years based entirely on the controlled distribu tion of defects within what a few years before would have been regarded as a pure, homogeneous crystal. Other examples exist in biochemistry, metallurgy, polyiners and, of course, catalysis. In addition to this of the importance of distribution, there has also been a recognition growing awareness that physical defects are as important as chemical defects. (We are, of course, using the word defect to imply some dis continuity in the material, and not in any derogatory sense. ) This broadening of the field of interest led the Materials Advisory Board( I} to recommend a new definition for the discipline, "Materials Character ization," to encompass this wider concept of the determination of the structure and composition of materials. In characterizing a material, perhaps the most important special area of interest is the surface.
Experts must be able to analyze and distinguish all materials, or combinations of materials, in use today-whether they be metals, ceramics, polymers, semiconductors, or composites. To understand a material's structure, how that structure determines its properties, and how that material will subsequently work in technological applications, researche
This fully updated Second Edition provides the reader with the solid understanding of tribology which is essential to engineers involved in the design of, and ensuring the reliability of, machine parts and systems. It moves from basic theory to practice, examining tribology from the integrated viewpoint of mechanical engineering, mechanics, and materials science. It offers detailed coverage of the mechanisms of material wear, friction, and all of the major lubrication techniques - liquids, solids, and gases - and examines a wide range of both traditional and state-of-the-art applications. For this edition, the author has included updates on friction, wear and lubrication, as well as completely revised material including the latest breakthroughs in tribology at the nano- and micro- level and a revised introduction to nanotechnology. Also included is a new chapter on the emerging field of green tribology and biomimetics.