Hundreds of lubricant additives are available industry-wide to improve base stock properties and protect metal surfaces; however, the wrong combination of these commodities can result in substandard performance. Surface Activity of Petroleum Derived Lubricants explains how surface activity is affected by several factors: the interfacial properties
This book focuses on innovative surfaces, lubricants, and materials to reduce friction and wear for environmental conservation and sustainability. Green Tribology: Emerging Technologies and Applications creates a platform for sharing knowledge currently emerging in the field of green tribology and concentrates on advances and developments in technologies and applications. FEATURES Discusses the influence of technological developments in green tribology on the environment and sustainability Highlights key findings on the superior tribological characteristics of bioinspired surfaces, tribological performance improvements with advances in green/ecofriendly materials, environmentally friendly lubricants, minimum quantity lubrication, and reuse of disposed materials Brings together the research expertise of leaders in the international tribology community Describes ongoing trends and future outlooks Aimed for advanced students, researchers, and industry professionals, this book will be of interest to readers seeking to understand and apply sustainable practices in tribology and lubrication engineering and related fields.
Lubricants are essential in engineering, however more sustainable formulations are needed to avoid adverse effects on the ecosystem. Bio-based lubricant formulations present a promising solution. Biolubricants: Science and technology is a comprehensive, interdisciplinary and timely review of this important subject.Initial chapters address the principles of lubrication, before systematically reviewing fossil and bio-based feedstock resources for biodegradable lubricants. Further chapters describe catalytic, (bio) chemical functionalisation processes for transformation of feedstocks into commercial products, product development, relevant legislation, life cycle assessment, major product groups and specific performance criteria in all major applications. Final chapters consider markets for biolubricants, issues to consider when selecting and using a lubricant, lubricant disposal and future trends.With its distinguished authors, Biolubricants: Science and technology is a comprehensive reference for an industrial audience of oil formulators and lubrication engineers, as well as researchers and academics with an interest in the subject. It provides an essential overview of scientific and technological developments enabling the cost-effective improvement of biolubricants, something that is crucial for the green future of the lubricant industry. - A comprehensive, interdisciplinary and timely review of bio-based lubricant formulations - Addresses the principles of lubrication - Reviews fossil and bio-based feedstock resources for biodegradable lubricants
This indispensable book describes lubricant additives, their synthesis, chemistry, and mode of action. All important areas of application are covered, detailing which lubricants are needed for a particular application. Laboratory and field performance data for each application is provided and the design of cost-effective, environmentally friendly technologies is fully explored. This edition includes new chapters on chlorohydrocarbons, foaming chemistry and physics, antifoams for nonaqueous lubricants, hydrogenated styrene–diene viscosity modifiers, alkylated aromatics, and the impact of REACh and GHS on the lubricant industry.
Natural and Synthetic Waxes A compilation of all relevant information for the production and use of waxes in technical applications Waxes are among the oldest organic substances used by mankind. Before all others, beeswax is known to have played a role in human history for thousands of years. But over time, many other wax species have been detected and exploited, and prepared for different utilizations. Today, we possess knowledge of a great variety of different types of waxes. Unfortunately, there still is no broadly accepted definition of a wax: for the relatively few wax chemists, waxes are usually defined by their physico-chemical properties more than by their chemical constitution. Waxes are not uniform but oligomeric and polymeric substances, not simply describable with a chemical formula. The realm of waxes encompasses fully or partly natural, refined, partly or fully synthetic products, which can be extended by “wax-like” products which do not fulfil all definition criteria. Waxes are offered in different forms like pellets, granules, powders, or micropowders. Their number of technical applications runs into thousands. However, waxes in most cases are just adjuvants or additives, and with few exceptions like candles not known to a broader public. Only few publications over the last decades tried to present a more comprehensive overview of heir chemistry, chemical composition, their physical and analytical properties, their applications, and their sometimes astonishing history. Based on personal experience and expertise, the authors intend to present an overview on the main classes of waxes, their origin, history, future, and potential fate. Economical aspects like market size and development, ecological impacts and challenges, and regulatory issues are also addressed. Waxes are indispensable products in everyday life and in industry and technology, though mostly not even visible or distinguishable to experts. They deserve more than the role of a “poor cousin” in chemistry and technology.
Surfactants play a critical role in tribology as they control friction, wear, and lubricant properties such as emulsification, demulsification, bioresistance, oxidation resistance, rust prevention, and corrosion resistance. The use of surfactants in tribology is a critical topic for scientists and engineers who are developing new materials and devi
Since the early 1970s, experts have recognized that petroleum pollutants were being discharged in marine waters worldwide, from oil spills, vessel operations, and land-based sources. Public attention to oil spills has forced improvements. Still, a considerable amount of oil is discharged yearly into sensitive coastal environments. Oil in the Sea provides the best available estimate of oil pollutant discharge into marine waters, including an evaluation of the methods for assessing petroleum load and a discussion about the concerns these loads represent. Featuring close-up looks at the Exxon Valdez spill and other notable events, the book identifies important research questions and makes recommendations for better analysis ofâ€"and more effective measures againstâ€"pollutant discharge. The book discusses: Inputâ€"where the discharges come from, including the role of two-stroke engines used on recreational craft. Behavior or fateâ€"how oil is affected by processes such as evaporation as it moves through the marine environment. Effectsâ€"what we know about the effects of petroleum hydrocarbons on marine organisms and ecosystems. Providing a needed update on a problem of international importance, this book will be of interest to energy policy makers, industry officials and managers, engineers and researchers, and advocates for the marine environment.
Used lubricating oil is a valuable resource. However, it must be re-refined mainly due to the accumulation of physical and chemical contaminants in the oil during service. Refining Used Lubricating Oils describes the properties of used lubricating oils and presents ways these materials can be re-refined and converted into useful lubricants as well as other products. It provides an up-to-date review of most of the processes for used lubricating oil refining that have been proposed or implemented in different parts of the world, and addresses feasibility and criteria for selecting a particular process. The book begins with an overview of lubricating oil manufacturing, both petroleum-based and synthetic-based. It reviews the types and properties of lubricating oils and discusses the characteristics and potential of used lubricating oils. The authors describe the basic steps of used oil treatment including dehydration, distillation or solvent extraction, and finishing. They explore the combustion of used oil for use as fuel, covering chemistry and equipment, fuel oil properties, and combustion emissions. The book considers alternative processing options such as refinery processing and re-refining. It also reviews the major refining processes that have been suggested over the years for used oil. These include acid/clay, simple distillation, combinations of distillation and hydrogenation, solvent extraction, filtration, and coking processes. The book addresses economic, life cycle assessment, and other criteria for evaluating the attractiveness of an oil recycling project, examining various costs and presenting an economic evaluation method using an Excel spreadsheet that can be downloaded from the publisher’s website. The book concludes with a chapter offering insights on how to choose the most suitable process technology.
Introduces the reader to the production of the products in a refinery • Introduces the reader to the types of test methods applied to petroleum products, including the need for specifications • Provides detailed explanations for accurately analyzing and characterizing modern petroleum products • Rewritten to include new and evolving test methods • Updates on the evolving test methods and new test methods as well as the various environmental regulations are presented
Highlighting the major economic and industrial changes in the lubrication industry since the first edition, Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology, Third Edition highlights the major economic and industrial changes in the lubrication industry and outlines the state of the art in each major lubricant application area. Chapters cover the use of lubricant fluids, growth or decline of market areas and applications, potential new applications, production capacities, and regulatory issues, including biodegradability, toxicity, and food production equipment lubrication. The highly-anticipated third edition features new and updated chapters including those on automatic and continuously variable transmission fluids, fluids for food-grade applications, oil-soluble polyalkylene glycols, functional bio-based lubricant base stocks, farnesene-derived polyolefins, estolides, bio-based lubricants from soybean oil, and trends in construction equipment lubrication. Features include: Contains an index of terms, acronyms, and analytical testing methods. Presents the latest conventions for describing upgraded mineral oil base fluids. Considers all the major lubrication areas: engine oils, industrial lubricants, food-grade applications, greases, and space-age applications Includes individual chapters on lubricant applications—such as environmentally friendly, disk drive, and magnetizable fluids—for major market areas around the globe. In a single, unique volume, Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology, Third Edition offers property and performance information of fluids, theoretical and practical background to their current applications, and strong indicators for global market trends that will influence the industry for years to come.