A brief introductory description of the new physical and mathematical ideas involved in formulating supersymmetric theories. The basic ideas are worked out in low space dimensionalities and techniques where the formulae do not obscure the concepts.
The book is the first full-size Encyclopedia which simultaneously covers such well-established and modern subjects as quantum field theory, supersymmetry, supergravity, M-theory, black holes and quantum gravity, noncommutative geometry, representation theory, categories and quantum groups, and their generalizations. The extraordinary historical part "the SUSY story," more than 700 authored articles from more than 250 high-level experts (including Nobel Prize Winner Gerard 't Hooft), a detailed (50 pages) Subject/Article three level index and an Author index, make the SUSY Encyclopedia an outstanding and indispensable book on the desk of researchers, experts, Ph.D. students, specialists and professionals in modern methods of theoretical and mathematical physics.
An special feature of the book is the treatment in depth of the theory of spinors in all dimensions and signatures, which is the basis of all developments of supergeometry both in physics and mathematics, especially in quantum field theory and supergravity."--Jacket.
This volume presents three weeks of lectures given at the Summer School on Quantum Field Theory, Supersymmetry, and Enumerative Geometry. With this volume, the Park City Mathematics Institute returns to the general topic of the first institute: the interplay between quantum field theory and mathematics.
The idea of supersymmetry was originally introduced in relativistic quantum field theories as a generalization of Poincare symmetry. In 1976 Nicolai sug gested an analogous generalization for non-relativistic quantum mechanics. With the one-dimensional model introduced by Witten in 1981, supersym metry became a major tool in quantum mechanics and mathematical, sta tistical, and condensed-IIll;l. tter physics. Supersymmetry is also a successful concept in nuclear and atomic physics. An underlying supersymmetry of a given quantum-mechanical system can be utilized to analyze the properties of the system in an elegant and effective way. It is even possible to obtain exact results thanks to supersymmetry. The purpose of this book is to give an introduction to supersymmet ric quantum mechanics and review some of the recent developments of vari ous supersymmetric methods in quantum and statistical physics. Thereby we will touch upon some topics related to mathematical and condensed-matter physics. A discussion of supersymmetry in atomic and nuclear physics is omit ted. However, the reader will find some references in Chap. 9. Similarly, super symmetric field theories and supergravity are not considered in this book. In fact, there exist already many excellent textbooks and monographs on these topics. A list may be found in Chap. 9. Yet, it is hoped that this book may be useful in preparing a footing for a study of supersymmetric theories in atomic, nuclear, and particle physics. The plan of the book is as follows.
The purpose of this handbook is to give an overview of some recent developments in differential geometry related to supersymmetric field theories. The main themes covered are: Special geometry and supersymmetry Generalized geometry Geometries with torsion Para-geometries Holonomy theory Symmetric spaces and spaces of constant curvature Conformal geometry Wave equations on Lorentzian manifolds D-branes and K-theory The intended audience consists of advanced students and researchers working in differential geometry, string theory, and related areas. The emphasis is on geometrical structures occurring on target spaces of supersymmetric field theories. Some of these structures can be fully described in the classical framework of pseudo-Riemannian geometry. Others lead to new concepts relating various fields of research, such as special Kahler geometry or generalized geometry.
Supersymmetry is a highly active area of considerable interest among physicists and mathematicians. It is not only fascinating in its own right, but there is also indication that it plays a fundamental role in the physics of elementary particles and gravitation. The purpose of the book is to lay down the foundations of the subject, providing the reader with a comprehensive introduction to the language and techniques, as well as detailed proofs and many clarifying examples. This book is aimed ideally at second-year graduate students. After the first three introductory chapters, the text is divided into two parts: the theory of smooth supermanifolds and Lie supergroups, including the Frobenius theorem, and the theory of algebraic superschemes and supergroups. There are three appendices. The first introduces Lie superalgebras and representations of classical Lie superalgebras, the second collects some relevant facts on categories, sheafification of functors and commutative algebra, and the third explains the notion of Frechet space in the super context.
This book describes the basic concepts of supersymmetric theories. It is aimed at theorists, experimentalists and cosmologists interested in supersymmetry, and its content is correspondingly divided into three distinct tracks of study. The topics covered include a discussion of the motivation for supersymmetry in fundamental physics, a description of the minimal supersymmetric model as well as models of grand unification and string models, a presentation of the main scenarios forsupersymmetry breaking, including the concepts and results of dynamical breaking. On the astrophysics/cosmology side, the book includes discussions of supersymmetric dark matter candidates, inflation, dark energy, and the cosmological constant problem. Some very basic knowledge of quantum field theoryis needed and extensive appendices (in particular an introduction to the Standard Model of fundamental interactions) allow the reader to refresh and complete their notions.
Supersymmetry was created by the physicists in the 1970's to give a unified treatment of fermions and bosons, the basic constituents of matter. Since then its mathematical structure has been recognized as that of a new development in geometry, and mathematicians have busied themselves with exploring this aspect. This volume collects recent advances in this field, both from a physical and a mathematical point of view, with an accent on a rigorous treatment of the various questions raised.
To the 1st edition of this monograph (addressed to advanced graduate students and researchers ) the author, responding to developments within superstring theory, has added 51/2 chapters dealing with two- dimensional supersymmetry. Authoritative, as lucid as the subject matter allows (yet demanding nonetheless!), attractively produced and priced. (NW) Annotation copyrighted by Book News, Inc., Portland, OR