Physics of Superionic Conductors

Physics of Superionic Conductors

Author: M.B. Salamon

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 267

ISBN-13: 3642813283

DOWNLOAD EBOOK

Superionic conductors are solids whose ionic conductivities approach, and in some cases exceed, those of molten salts and electrolyte solutions. This implies an un usual state of matter in which some atoms have nearly liquidlike mobility while others retain their regular crystalline arrangement. This liquid-solid duality has much appeal to condensed matter physicists, and the coincident development of powerful new methods for studying disordered solids and interest in superionic conductors for technical applications has resulted in a new surge of activity in this venerable field. It is the purpose of this book to summarize the current re search in the physics of superionic conduction. with special emphasis on those aspects which set these materials apart from other solids. The volume is aimed to wards the materials community and will, we expect, stimulate further research on these potentially useful substances. The usual characterization of the superionic phase lists high ionic conductivity; low activation energy; and the open structure of the crystal, with its interconne ted network of vacant sites available to one ionic species. To these, as we demon strate in this volume, should be added important dynami~ and collective effect~: the absence of well-defined optical lattice modes, the presence of a pervasive, low-energy excitation, an infrared peak in the frequency-dependent conductivity, unusual NMR prefactors, phase transitions, and a strong tendency for the mobile ion to be found between allowed sites.


Superionic Conductor Physics - Proceedings Of The 1st International Meeting On Superionic Conductor Physics (Idmsicp)

Superionic Conductor Physics - Proceedings Of The 1st International Meeting On Superionic Conductor Physics (Idmsicp)

Author: Jun-ichi Kawamura

Publisher: World Scientific

Published: 2007-01-30

Total Pages: 225

ISBN-13: 9814475890

DOWNLOAD EBOOK

The book presents basic studies on ion transport properties of ionic conductive solid. It describes research on theory, modeling, simulation, crystalline structure, nuclear magnetic resonance, electric conduction, optical properties, and thermal measurement in this field. Superionic conductors are highly promising functional materials. As a stepping stone in the development of new superionic conductors that can be utilized as functinal materials efforts to reevaluate solid-interior diffusion and conduction phenomena of ions and molecules in a superionic conductor on the basis of basic physical properties, and to clarify mechanism governing these phenomena from a microscopic standpoint are important.How are diffusing ions associated with material structures within a superionic conductor? What types of interaction are diffusing ions undergoing with the host ions surrounding them? How important is the correlation among diffusing ions in their motion? The carefully presented detail of this book will be of value to research devoted to the understanding and control of functional materials such as superionic conductors.


The Physics of Superionic Conductors and Electrode Materials

The Physics of Superionic Conductors and Electrode Materials

Author: John W. Perram

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 282

ISBN-13: 1468444905

DOWNLOAD EBOOK

The following chapters present most of the lectures delivered at the NATO Advanced Studies Institute on "The Physics of Super ionic Conductors and Electrode Materials", held at Odense Univer sity's Mathematics Department between the 4th and 22nd of August, 1980. The aim of the organizing committee was to present in a rather detailed fashion the most recent advances in the computa tional mathematics and physics of condensed matter physics and to see how these advances could be applied to the study of ionically conducting solids. The first half of the meeting was mainly taken up with lectures. In the second week, working groups on the various aspects were set up, the students joining these groups being helped in the implementation of the lecture material. The leaders of these groups deserve special mention for the tremendous effort they put into this aspect of the meeting, particularly: Dr. Aneesur Rahman (Molecular Dynamics group) Dr. Fred Horne (Ion Transport group) Drs. Nick Quirke and David Adams (Monte Carlo methods) Dr. Heinz Schulz (Diffraction group) Dr. John Harding (Defect Calculations group) The Molecular Dynamics group achieved a certain amount of notoriety within the University by appearing to live in the terminal room.


Introduction to Solid State Ionics

Introduction to Solid State Ionics

Author: C. S. Sunandana

Publisher: CRC Press

Published: 2015-11-11

Total Pages: 532

ISBN-13: 1482229714

DOWNLOAD EBOOK

Introduction to Solid State Ionics: Phenomenology and Applications presents a pedagogical, graduate-level treatment of the science and technology of superionic conductors, also known as fast ion conductors or solid electrolytes. Suitable for physics, materials science, and engineering researchers and students, the text emphasizes basic physics and


Fast Ion Transport in Solids

Fast Ion Transport in Solids

Author: B. Scrosati

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 375

ISBN-13: 9401119163

DOWNLOAD EBOOK

The main motivation for the organization of the Advanced Research Workshop in Belgirate was the promotion of discussions on the most recent issues and the future perspectives in the field of Solid State lonics. The location was chosen on purpose since Belgirate was the place were twenty years ago, also then under the sponsorship of NATO, the very first international meeting on this important and interdisciplinary field took place. That meeting was named "Fast Ion Transport in Solids" and gathered virtually everybody at that time having been active in any aspect of motion of ions in solids. The original Belgirate Meeting made for the first time visible the technological potential related to the phenomenon of the fast ionic transport in solids and, accordingly, the field was given the name "Solid State lonics". This field is now expanded to cover a wide range of technologies which includes chemical sensors for environmental and process control, electrochromic windows, mirrors and displays, fuel cells, high performance rechargeable batteries for stationary applications and electrotraction, chemotronics, semiconductor ionics, water electrolysis cells for hydrogen economy and other applications. The main idea for holding an anniversary meeting was that of discussing the most recent issues and the future perspectives of Solid State lonics just twenty years after it has started at the same location on the lake Maggiore in North Italy.


Physics in One Dimension

Physics in One Dimension

Author: J. Bernasconi

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 372

ISBN-13: 3642815928

DOWNLOAD EBOOK

In 1966, E.H. Lieb and D.C. r1attis published a book on "Mathematical Physics in One Dimension" [Academic Press, New York and London] which is much more than just a collection of reprints and which in fact marked the beginnings of the rapidly growing interest in one-dimensional problems and materials in the 1970's. In their Foreword, Lieb and r~attis made the observation that " ... there now exists a vast literature on this subject, albeit one which is not indexed under the topic "one dimension" in standard indexing journals and which is therefore hard to research ... ". Today, the situation is even worse, and we hope that these Proceedings will be a valuable guide to some of the main current areas of one-dimensional physics. From a theoretical point of view, one-dimensional problems have always been very attractive. Many non-trivial models are soluble in one dimension, while they are only approximately understood in three dimensions. Therefore, the corresponding exact solutions serve as a useful test of approximate ma thematical methods, and certain features of the one-dimensional solution re main relevant in higher dimensions. On the other hand, many important phe nomena are strongly enhanced, and many concepts show up especially clearly in one-dimensional or quasi -one-dimensional systems. Among them are the ef fects of fluctuations, of randomness, and of nonlinearity; a number of in teresting consequences are specific to one dimension.


Magnetic Properties of Layered Transition Metal Compounds

Magnetic Properties of Layered Transition Metal Compounds

Author: L.J. de Jongh

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 430

ISBN-13: 9400918607

DOWNLOAD EBOOK

In the last two decades low-dimensional (low-d) physics has matured into a major branch of science. Quite generally we may define a system with restricted dimensionality d as an object that is infinite only in one or two spatial directions (d = 1 and 2). Such a definition comprises isolated single chains or layers, but also fibres and thin layers (films) of varying but finite thickness. Clearly, a multitude of physical phenomena, notably in solid state physics, fall into these categories. As examples, we may mention: • Magnetic chains or layers (thin-film technology). • Metallic films (homogeneous or heterogeneous, crystalline, amorphous or microcristalline, etc.). • I-d or 2-d conductors and superconductors. • Intercalated systems. • 2-d electron gases (electrons on helium, semiconductor interfaces). • Surface layer problems (2-d melting of monolayers of noble gases on a substrate, surface problems in general). • Superfluid films of ~He or 'He. • Polymer physics. • Organic and inorganic chain conductors, superionic conductors. • I-d or 2-d molecular crystals and liquid crystals. • I-d or 2-d ferro- and antiferro electrics.


Solid State Electrochemistry

Solid State Electrochemistry

Author: Peter G. Bruce

Publisher: Cambridge University Press

Published: 1997-06-12

Total Pages: 364

ISBN-13: 9780521599498

DOWNLOAD EBOOK

This book describes, for the first time in a modern text, the fundamental principles on which solid state electrochemistry is based. In this sense it is in contrast to other books in the field which concentrate on a description of materials. Topics include solid (ceramic) electrolytes, glasses, polymer electrolytes, intercalation electrodes, interfaces and applications. The different nature of ionic conductivity in ceramic, glassy and polymer electrolytes is described as are the thermodynamics and kinetics of intercalation reactions. The interface between solid electrolytes and electrodes is discussed and contrasted with the more conventional liquid state electrochemistry. The text provides an essential foundation of understanding for postgraduates or others entering the field for the first time and will also be of value in advanced undergraduate courses.


Quantum Dissipative Systems

Quantum Dissipative Systems

Author: Ulrich Weiss

Publisher: World Scientific

Published: 2012

Total Pages: 587

ISBN-13: 9814374911

DOWNLOAD EBOOK

Starting from first principles, this book introduces the fundamental concepts and methods of dissipative quantum mechanics and explores related phenomena in condensed matter systems. Major experimental achievements in cooperation with theoretical advances have brightened the field and brought it to the attention of the general community in natural sciences. Nowadays, working knowledge of dissipative quantum mechanics is an essential tool for many physicists. This book -- originally published in 1990 and republished in 1999 and and 2008 as enlarged second and third editions -- delves significantly deeper than ever before into the fundamental concepts, methods and applications of quantum dissipative systems.This fourth edition provides a self-contained and updated account of the quantum mechanics of open systems and offers important new material including the most recent developments. The subject matter has been expanded by about fifteen percent. Many chapters have been completely rewritten to better cater to both the needs of newcomers to the field and the requests of the advanced readership. Two chapters have been added that account for recent progress in the field. This book should be accessible to all graduate students in physics. Researchers will find this a rich and stimulating source.