Supergravity Primer, A: From Geometrical Principles To The Final Lagrangian

Supergravity Primer, A: From Geometrical Principles To The Final Lagrangian

Author: Michel Rausch De Traubenberg

Publisher: World Scientific

Published: 2019-12-24

Total Pages: 379

ISBN-13: 9811210535

DOWNLOAD EBOOK

This book is devoted to a pedagogical introduction to supergravity from a practical perspective. As a particular feature of the book, the authors provide explicit details, which makes the computations easier to follow for the interested reader. Each chapter has summary tables, which contain the main results and, in addition, we have collected important or additional material in the appendix.In the first part of the book, the N=1 supergravity Lagrangian in four spacetime dimensions is derived. Closely following the reference of Wess and Bagger, we use the superspace approach. All steps, from the geometric principles of curved superspace to the field redefinition necessary to obtain a correctly normalised Lagrangian, are carefully analysed. Comparisons with other methods, such as conformal supergravity, are also given.In the second part of the book, we address more phenomenological aspects of supergravity such as supersymmetry breaking, no-scale supergravity, super-Higgs mechanism, etc. Finally, the relationship between supergravity and particle physics, and cosmology are analysed.


From Spinors to Supersymmetry

From Spinors to Supersymmetry

Author: Herbi K. Dreiner

Publisher: Cambridge University Press

Published: 2023-06-08

Total Pages: 1031

ISBN-13: 1009347535

DOWNLOAD EBOOK

Supersymmetry is an extension of the successful Standard Model of particle physics; it relies on the principle that fermions and bosons are related by a symmetry, leading to an elegant predictive structure for quantum field theory. This textbook provides a comprehensive and pedagogical introduction to supersymmetry and spinor techniques in quantum field theory. By utilising the two-component spinor formalism for fermions, the authors provide many examples of practical calculations relevant for collider physics signatures, anomalies, and radiative corrections. They present in detail the component field and superspace formulations of supersymmetry and explore related concepts, including the theory of extended Higgs sectors, models of grand unification, and the origin of neutrino masses. Numerous exercises are provided at the end of each chapter. Aimed at graduate students and researchers, this volume provides a clear and unified treatment of theoretical concepts that are at the frontiers of high energy particle physics.


Symmetries in Fundamental Physics

Symmetries in Fundamental Physics

Author: Kurt Sundermeyer

Publisher: Springer

Published: 2014-07-23

Total Pages: 806

ISBN-13: 3319065815

DOWNLOAD EBOOK

Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also understand the implications of quantum physics and symmetry considerations: Poincare invariance dictates both the characteristic properties of particles (mass, spin, ...) and the wave equations of spin 0, 1/2, 1, ... objects. Further, the work of C.N. Yang and R. Mills reveals the consequences of internal symmetries as exemplified in the symmetry group of elementary particle physics. Given this pivotal role of symmetries it is thus not surprising that current research in fundamental physics is to a great degree motivated and inspired by considerations of symmetry. The treatment of symmetries in this monograph ranges from classical physics to now well-established theories of fundamental interactions, to the latest research on unified theories and quantum gravity.


Beyond Einstein Gravity

Beyond Einstein Gravity

Author: Salvatore Capozziello

Publisher: Springer Science & Business Media

Published: 2010-10-27

Total Pages: 447

ISBN-13: 9400701659

DOWNLOAD EBOOK

Beyond Einstein’s Gravity is a graduate level introduction to extended theories of gravity and cosmology, including variational principles, the weak-field limit, gravitational waves, mathematical tools, exact solutions, as well as cosmological and astrophysical applications. The book provides a critical overview of the research in this area and unifies the existing literature using a consistent notation. Although the results apply in principle to all alternative gravities, a special emphasis is on scalar-tensor and f(R) theories. They were studied by theoretical physicists from early on, and in the 1980s they appeared in attempts to renormalize General Relativity and in models of the early universe. Recently, these theories have seen a new lease of life, in both their metric and metric-affine versions, as models of the present acceleration of the universe without introducing the mysterious and exotic dark energy. The dark matter problem can also be addressed in extended gravity. These applications are contributing to a deeper understanding of the gravitational interaction from both the theoretical and the experimental point of view. An extensive bibliography guides the reader into more detailed literature on particular topics.


Particle Physics

Particle Physics

Author: Necia Grant Cooper

Publisher: CUP Archive

Published: 1988-04-29

Total Pages: 220

ISBN-13: 9780521347808

DOWNLOAD EBOOK

This book explains the emergence of a profoundly new understanding of the fundamental forces of Nature.


Applied N

Applied N

Author: Pran Nath

Publisher: World Scientific

Published: 1984

Total Pages: 120

ISBN-13: 9789971966485

DOWNLOAD EBOOK

These lectures give an elementary introduction to the important recent developments of the applications of N=1 supergravity to the construction of unified models of elementary particle interactions. Topics covered include couplings of supergravity with matter, spontaneous symmetry breaking and the super-higgs effect, construction of supergravity unified models, and the phenomenon of SU(2) x U(1) electroweak-symmetry breaking by supergravity. Experimental consequences of N-1 supergravity unified theory, in particular, the possible supersymmetric decays of the W± and Z0 bosons, are also discussed. The treatment presented encompasses a broad class of models, both of the tree breaking as well as the radiative breaking of SU(2) x U(1). Rules of tensor calculus and the explicit construction of the Lagrangian of the Supergravity-matter couplings are given in the appendix.


Chern-simons (Super)gravity

Chern-simons (Super)gravity

Author: Mokhtar Hassaine

Publisher: World Scientific

Published: 2016-01-07

Total Pages: 149

ISBN-13: 9814730955

DOWNLOAD EBOOK

'The authors provide an up-to-date, well-organised background and essential elements of supergravity notions as well as all relevant aspects of Chern-Simons forms in gravitation. The book is a self-contained, informative, and much-needed broad introduction into the latest quantum gravity concepts, with a main focus on Chern-Simons gravity and supersymmetry … The book represents a comprehensive and systematic pedagogical exposition on gravitational Chern-Simons (Super)gravity theories, their applications, together with a selection of related recent developments in the field.'Contemporary PhysicsThis book grew out of a set of lecture notes on gravitational Chern-Simons (CS) theories developed over the past decade for several schools and different audiences including graduate students and researchers.CS theories are gauge-invariant theories that can include gravity consistently. They are only defined in odd dimensions and represent a very special class of theories in the Lovelock family. Lovelock gravitation theories are the natural extensions of General Relativity for dimensions greater than four that yield second-order field equations for the metric. These theories also admit local supersymmetric extensions where supersymmetry is an off-shell symmetry of the action, as in a standard gauge theory.Apart from the arguments of mathematical elegance and beauty, the gravitational CS actions are exceptionally endowed with physical attributes that suggest the viability of a quantum interpretation. CS theories are gauge-invariant, scale-invariant and background independent; they have no dimensional coupling constants. All constants in the Lagrangian are fixed rational coefficients that cannot be adjusted without destroying gauge invariance. This exceptional status of CS systems makes them classically interesting to study, and quantum mechanically intriguing and promising.


Supersymmetry and String Theory

Supersymmetry and String Theory

Author: Michael Dine

Publisher: Cambridge University Press

Published: 2007-01-04

Total Pages: 481

ISBN-13: 113946244X

DOWNLOAD EBOOK

The past decade has witnessed dramatic developments in the field of theoretical physics. This book is a comprehensive introduction to these recent developments. It contains a review of the Standard Model, covering non-perturbative topics, and a discussion of grand unified theories and magnetic monopoles. It introduces the basics of supersymmetry and its phenomenology, and includes dynamics, dynamical supersymmetry breaking, and electric-magnetic duality. The book then covers general relativity and the big bang theory, and the basic issues in inflationary cosmologies before discussing the spectra of known string theories and the features of their interactions. The book also includes brief introductions to technicolor, large extra dimensions, and the Randall-Sundrum theory of warped spaces. This will be of great interest to graduates and researchers in the fields of particle theory, string theory, astrophysics and cosmology. The book contains several problems, and password protected solutions will be available to lecturers at www.cambridge.org/9780521858410.