Superconducting Accelerator Magnets

Superconducting Accelerator Magnets

Author: K.-H. Mess

Publisher: World Scientific

Published: 1996

Total Pages: 236

ISBN-13: 9789810227906

DOWNLOAD EBOOK

The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements on field quality in large storage rings. The operational experience with the superconducting HERA collider serves as an illustration. Finally superconducting correction coils and practical construction and fabrication methods of accelerator magnets are discussed. The physical and technical principles described in the book are substantiated with a wealth of experimental data on multipoles, persistent- and eddy-current effects, quench performance and much more.


Field Computation for Accelerator Magnets

Field Computation for Accelerator Magnets

Author: Stephan Russenschuck

Publisher: John Wiley & Sons

Published: 2011-02-08

Total Pages: 778

ISBN-13: 3527635475

DOWNLOAD EBOOK

Written by a leading expert on the electromagnetic design and engineering of superconducting accelerator magnets, this book offers the most comprehensive treatment of the subject to date. In concise and easy-to-read style, the author lays out both the mathematical basis for analytical and numerical field computation and their application to magnet design and manufacture. Of special interest is the presentation of a software-based design process that has been applied to the entire production cycle of accelerator magnets from the concept phase to field optimization, production follow-up, and hardware commissioning. Included topics: Technological challenges for the Large Hadron Collider at CERN Algebraic structures and vector fields Classical vector analysis Foundations of analytical field computation Fields and Potentials of line currents Harmonic fields The conceptual design of iron- and coil-dominated magnets Solenoids Complex analysis methods for magnet design Elementary beam optics and magnet polarities Numerical field calculation using finite- and boundary-elements Mesh generation Time transient effects in superconducting magnets, including superconductor magnetization and cable eddy-currents Quench simulation and magnet protection Mathematical optimization techniques using genetic and deterministic algorithms Practical experience from the electromagnetic design of the LHC magnets illustrates the analytical and numerical concepts, emphasizing the relevance of the presented methods to a great many applications in electrical engineering. The result is an indispensable guide for high-energy physicists, electrical engineers, materials scientists, applied mathematicians, and systems engineers.


Superconducting Accelerator Magnets

Superconducting Accelerator Magnets

Author: Karl-hubert Mess

Publisher: World Scientific

Published: 1996-08-30

Total Pages: 230

ISBN-13: 9814498440

DOWNLOAD EBOOK

The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements on field quality in large storage rings. The operational experience with the superconducting HERA collider serves as an illustration. Finally superconducting correction coils and practical construction and fabrication methods of accelerator magnets are discussed. The physical and technical principles described in the book are substantiated with a wealth of experimental data on multipoles, persistent- and eddy-current effects, quench performance and much more.


Nb3Sn Accelerator Magnets

Nb3Sn Accelerator Magnets

Author: Alexander V Zlobin

Publisher:

Published: 2020-10-08

Total Pages: 460

ISBN-13: 9781013271359

DOWNLOAD EBOOK

This open access book is written by world-recognized experts in the fields of applied superconductivity and superconducting accelerator magnet technologies. It provides a contemporary review and assessment of the experience in research and development of high-field accelerator dipole magnets based on Nb3Sn superconductor over the past five decades. The reader attains clear insight into the development and the main properties of Nb3Sn composite superconducting wires and Rutherford cables, and details of accelerator dipole designs, technologies and performance. Special attention is given to innovative features of the developed Nb3Sn magnets. The book concludes with a discussion of accelerator magnet needs for future circular colliders.; Broadens our understanding of design and performance limits of high-field Nb3Sn accelerator magnets for a future very high energy hadron collider Offers beginners a concise overview of the relevant design concepts for a new generation of superconducting accelerator magnets based on Nb3Sn superconductor Illustrates the complete process of accelerator magnet design and fabrication Provides a contemporary review and assessment of the past experience with Nb3Sn high-field dipole accelerator magnets Identifies the main open R&D issues for Nb3Sn high-field dipole magnets This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.


Superconductivity

Superconductivity

Author: R.G. Sharma

Publisher: Springer

Published: 2015-02-26

Total Pages: 427

ISBN-13: 3319137131

DOWNLOAD EBOOK

This book presents the basics and applications of superconducting magnets. It explains the phenomenon of superconductivity, theories of superconductivity, type II superconductors and high-temperature cuprate superconductors. The main focus of the book is on the application to superconducting magnets to accelerators and fusion reactors and other applications of superconducting magnets. The thermal and electromagnetic stability criteria of the conductors and the present status of the fabrication techniques for future magnet applications are addressed. The book is based on the long experience of the author in studying superconducting materials, building magnets and numerous lectures delivered to scholars. A researcher and graduate student will enjoy reading the book to learn various aspects of magnet applications of superconductivity. The book provides the knowledge in the field of applied superconductivity in a comprehensive way.


Superconducting Technology

Superconducting Technology

Author: Kristian Fossheim

Publisher: World Scientific

Published: 1991

Total Pages: 258

ISBN-13: 9789810206284

DOWNLOAD EBOOK

This book contains an interdisciplinary selection of timely articles which cover a wide range of superconducting technologies ranging from high tech medicine (10-12 Gauss) to multipurpose sensors, microwaves, radio engineering, magnet technology for accelerators, magnetic energy storage, and power transmission on the 109 watt scale. It is aimed primarily at the non-specialist and will be suitable as an introductory course book for those in the relevant fields and related industries. As shown in the title several examples of high-c applications are included. While low-Tc is still the leading technology, for instance, in cables and SQUIDS, case studies in these areas are presented.


Superconducting Magnet Systems

Superconducting Magnet Systems

Author: H. Brechna

Publisher: Springer

Published: 2011-12-15

Total Pages: 0

ISBN-13: 9783642807237

DOWNLOAD EBOOK

The renaissance of magnet technology started in the early 1950s with the establishment of high-energy accelerators. About a decade later in 1961, or fifty years after the discovery of superconductivity, high-field superconducting laboratory magnets became a reality. Conventional still the major beam-handling and experimen electromagnets, which are tal devices used in laboratories, operate at zero efficiency. To generate high magnetic fields in a useful volume, considerable amounts of power are needed. Superconducting d. c. magnets do not require any power at all. It is somewhat depressing to note that, sixty years after the first superconductor was tested, the experimental d. c. superconducting mag net is still the only large-scale equipment operated in laboratories. Al though there has been considerable activity in the area of superconduc tivity, superconductors are used on quite a modest scale in electronic and quantum devices, in medicine and biology, and in physical experi ments where high magnetic fields are essential. It is only recently that Type II superconductors have been introduced in power engineering (power generation, storage and transport) to replace pulsed accelerator magnets; for fast and economical transportation vehicles (levitated trains) where superconductors may ultimately replace the wheel; to make new means of en~rgy generation economically feasible, such as in magneto hydrodynamics and in fusion reactors; and for high-efficiency electric motors. High-field superconducting magnets are being proposed for de salination of seawater, for magnetic separation in the mining industry, for cleaning polluted water, and for sewage treatment.


Reviews Of Accelerator Science And Technology - Volume 4: Accelerator Applications In Industry And The Environment

Reviews Of Accelerator Science And Technology - Volume 4: Accelerator Applications In Industry And The Environment

Author: Alexander Wu Chao

Publisher: World Scientific

Published: 2012-02-20

Total Pages: 300

ISBN-13: 9814452793

DOWNLOAD EBOOK

Since their debut in the late 1920s, particle accelerators have evolved into a backbone for the development of science and technology in modern society. Of about 30,000 accelerators at work in the world today, a majority is for applications in industry (about 20,000 systems worldwide).There are two major categories of industrial applications: materials processing and treatment, and materials analysis. Materials processing and treatment includes ion implantation (semi-conductor materials, metals, ceramics, etc.) and electron beam irradiation (sterilization of medical devices, food pasteurization, treatment of carcasses and tires, cross-linking of polymers, cutting and welding, curing of composites, etc.). Materials analysis covers ion beam analysis (IBA), non-destructive detection using photons and neutrons, as well as accelerator mass spectrometry (AMS). All the products that are processed, treated and inspected using beams from particle accelerators are estimated to have a collective value of US$500 billion per annum worldwide. Accelerators are also applied for environment protection, such as purifying drinking water, treating waste water, disinfecting sewage sludge and removing pollutants from flue gases.Industrial accelerators continue to evolve, in terms of new applications, qualities and capabilities, and reduction of their costs. Breakthroughs are encountered whenever a new product is made, or an existing product becomes more cost effective. Their impact on our society continues to grow with the potential to address key issues in economics or the society of today.This volume contains fourteen articles, all authored by renowned scientists in their respective fields.


RF Superconductivity for Accelerators

RF Superconductivity for Accelerators

Author: Hasan Padamsee

Publisher: John Wiley & Sons

Published: 2008-02-26

Total Pages: 548

ISBN-13: 3527408428

DOWNLOAD EBOOK

This book introduces some of the key ideas of this exciting field, using a pedagogic approach, and presents a comprehensive overview of the field. It is divided into four parts. The first part introduces the basic concepts of microwave cavities for particle acceleration. The second part is devoted to the observed behavior of superconducting cavities. In the third part,general issues connected with beam-cavity interaction and the related issues for the critical components are covered. The final part discusses applications of superconducting cavities to frontier accelerators of the future, drawing heavily on the examples that are in their most advanced stage. Each part of the book ends in a Problems section to illustrate and amplify text material as well as draw on example applications of superconducting cavities to existing and future accelerators.


Iron Dominated Electromagnets: Design, Fabrication, Assembly And Measurements

Iron Dominated Electromagnets: Design, Fabrication, Assembly And Measurements

Author: Jack T Tanabe

Publisher: World Scientific Publishing Company

Published: 2005-05-06

Total Pages: 355

ISBN-13: 9813101989

DOWNLOAD EBOOK

This unique book, written by one of the world's foremost specialists in the field, is devoted to the design of low and medium field electromagnets whose field level and quality (uniformity) are dominated by the pole shape and saturation characteristics of the iron yoke.The wide scope covers material ranging from the physical requirements for typical high performance accelerators, through the mathematical relationships which describe the shape of two-dimensional magnetic fields, to the mechanical fabrication, assembly, installation, and alignment of magnets in a typical accelerator lattice. In addition, stored energy concepts are used to develop magnetic force relationships and expressions for magnets with time varying fields.The material in the book is derived from lecture notes used in a course at the Lawrence Livermore National Laboratory and subsequently expanded for the U.S. Particle Accelerator School, making this text an invaluable reference for students planning to enter the field of high energy physics.Mathematical relationships tying together magnet design and measurement theory are derived from first principles, and chapters are included that describe mechanical design, fabrication, installation, and alignment. Some fabrication and assembly practices are reviewed to ensure personnel and equipment safety and operational reliability of electromagnets and their power supply systems. This additional coverage makes the book an important resource for those already in the particle accelerator business as well as those requiring the design and fabrication of low and medium field level magnets for charged particle beam transport in ion implantation and medical applications.