The 14th International Symposium on Superalloys (Superalloys 2020) highlights technologies for lifecycle improvement of superalloys. In addition to the traditional focus areas of alloy development, processing, mechanical behavior, coatings, and environmental effects, this volume includes contributions from academia, supply chain, and product-user members of the superalloy community that highlight technologies that contribute to improving manufacturability, affordability, life prediction, and performance of superalloys.
This book presents an up-to-date overview on the main classes of metallic materials currently used in aeronautical structures and propulsion engines and discusses other materials of potential interest for structural aerospace applications. The coverage encompasses light alloys such as aluminum-, magnesium-, and titanium-based alloys, including titanium aluminides; steels; superalloys; oxide dispersion strengthened alloys; refractory alloys; and related systems such as laminate composites. In each chapter, materials properties and relevant technological aspects, including processing, are presented. Individual chapters focus on coatings for gas turbine engines and hot corrosion of alloys and coatings. Readers will also find consideration of applications in aerospace-related fields. The book takes full account of the impact of energy saving and environmental issues on materials development, reflecting the major shifts that have occurred in the motivations guiding research efforts into the development of new materials systems. Aerospace Alloys will be a valuable reference for graduate students on materials science and engineering courses and will also provide useful information for engineers working in the aerospace, metallurgical, and energy production industries.
Nickel-based superalloys, an alloy system bases on nickel as the matrix element with the addition of up to 10 more alloying elements including chromium, aluminum, cobalt, tungsten, molybdenum, titanium, and so on. Through the development and improvement of nickel-based superalloys in the past century, they are well proved to show excellent performance at the elevated service temperature. Owing to the combination of extraordinary high-temperature mechanical properties, such as monotonic and cyclic deformation resistance, fatigue crack propagation resistance; and high-temperature chemical properties, such as corrosion and oxidation resistance, phase stability, nickel-based superalloys are widely used in the critical hot-section components in aerospace and energy generation industries. The success of nickel-based superalloy systems attributes to both the well-tailored microstructures with the assistance of carefully doped alloying elements, and the intently developed manufacturing processes. The microstructure of the modern nickel-based superalloys consists of a two-phase configuration: the intermetallic precipitates (Ni,Co)3(Al,Ti,Ta) known as γ′ phase dispersed into the austenite γ matrix, which is firstly introduced in the 1940s. The recently developed additive manufacturing (AM) techniques, acting as the disruptive manufacturing process, offers a new avenue for producing the nickel-based superalloy components with complicated geometries. However, γ′ strengthened nickel-based superalloys always suffer from the micro-cracking during the AM process, which is barely eliminated by the process optimization. On this basis, the new compositions of γ′ strengthened nickel-based superalloy adapted to the AM process are of great interest and significance. This study sought to design novel γ′ strengthened nickel-based superalloys readily for AM process with limited cracking susceptibility, based on the understanding of the cracking mechanisms. A two-parameter model is developed to predict the additive manufacturability for any given composition of a nickel-based superalloy. One materials index is derived from the comparison of the deformation-resistant capacity between dendritic and interdendritic regions, while another index is derived from the difference of heat resistant capacity of these two spaces. By plotting the additive manufacturability diagram, the superalloys family can be categorized into the easy-to-weld, fairly-weldable, and non-weldable regime with the good agreement of the existed knowledge. To design a novel superalloy, a Cr-Co-Mo-W-Al-Ti-Ta-Nb-Fe-Ni alloy family is proposed containing 921,600 composition recipes in total. Through the examination of additive manufacturability, undesired phase formation propensity, and the precipitation fraction, one composition of superalloy, MAD542, out of the 921,600 candidates is selected. Validation of additive manufacturability of MAD542 is carried out by laser powder bed fusion (LPBF). By optimizing the LPBF process parameters, the crack-free MAD542 part is achieved. In addition, the MAD542 superalloy shows great resistance to the post-processing treatment-induced cracking. During the post-processing treatment, extensive annealing twins are promoted to achieve the recrystallization microstructure, ensuring the rapid reduction of stored energy. After ageing treatment, up to 60-65% volume fraction of γ′ precipitates are developed, indicating the huge potential of γ′ formation. Examined by the high-temperature slow strain rate tensile and constant loading creep testing, the MAD542 superalloy shows superior strength than the LPBF processed and hot isostatic pressed plus heat-treated IN738LC superalloy. While the low ductility of MAD542 is existed, which is expected to be improved by modifying the post-processing treatment scenarios and by the adjusting building direction in the following stages of the Ph.D. research. MAD542 superalloy so far shows both good additive manufacturability and mechanical potentials. Additionally, the results in this study will contribute to a novel paradigm for alloy design and encourage more γ′-strengthened nickel-based superalloys tailored for AM processes in the future.
This collection explores all aspects of metallurgical processing, materials behavior, and microstructural performance for the distinct class of 718-type superalloys and derivatives. Technical topics focus on alloy and process development, production, product applications, trends, and the development of advanced modeling tools. New developments in R&D, new processing methods, 3D printing, and other nontraditional applications also are covered.
Superalloys are unique high-temperature materials used in gas turbine engines, which display excellent resistance to mechanical and chemical degradation. This book introduces the metallurgical principles which have guided their development. Suitable for graduate students and researchers, it includes exercises and additional resources at www.cambridge.org/9780521859042.
Nickel Base Single Crystals Across Length Scales is addresses the most advanced knowledge in metallurgy and computational mechanics and how they are applied to superalloys used as bare materials or with a thermal barrier coating system. Joining both aspects, the book helps readers understand the mechanisms driving properties and their evolution from fundamental to application level. These guidelines are helpful for students and researchers who wish to understand issues and solutions, optimize materials, and model them in a cross-check analysis, from the atomistic to component scale. The book is useful for students and engineers as it explores processing, characterization and design. - Provides an up-to-date overview on the field of superalloys - Covers the relationship between microstructural evolution and mechanical behavior at high temperatures - Discusses both basic and advanced modeling and characterization techniques - Includes case studies that illustrate the application of techniques presented in the book
Collaboration between those working in product development and production is essential for successful product realization. The Swedish Production Academy (SPA) was founded in 2006 with the aim of driving and developing production research and higher education in Sweden, and increasing national cooperation in research and education within the area of production. This book presents the proceedings of SPS2024, the 11th Swedish Production Symposium, held from 23 to 26 April 2024 in Trollhättan, Sweden. The conference provided a platform for SPA members, as well as for professionals from industry and academia interested in production research and education from around the world, to share insights and ideas. The title and overarching theme of SPS2024 was Sustainable Production through Advanced Manufacturing, Intelligent Automation and Work Integrated Learning, and the conference emphasized stakeholder value, the societal role of industry, worker wellbeing, and environmental sustainability, in alignment with the European Commission's vision for the future of manufacturing. The 59 papers included here were accepted for publication and presentation at the symposium after a thorough review process. They are divided into 6 sections reflecting the thematic areas of the conference, which were: sustainable manufacturing, smart production and automation, digitalization for efficient product realization, circular production, industrial transformation for sustainability, and the integration of education and research. Highlighting the latest developments and advances in automation and sustainable production, the book will be of interest to all those working in the field.
This reference text discusses fundamentals, classification, principles, applications of additive and subtractive manufacturing processes in a single volume. The text discusses 3D printing techniques with the help of practical case studies, covers rapid tooling using microwave sintering and ultrasonic assisted sintering process, and covers different hybrid manufacturing techniques like cryo-MQL, and textured cutting inserts. It covers important topics including green manufacturing, ultrasonic assisted machining, electro thermal based non-conventional machining processes, metal based additive manufacturing, LASER based additive manufacturing, indirect rapid tooling, and polymer based additive manufacturing. The book: Discusses additive and subtractive manufacturing processes in detail Covers hybrid manufacturing processes Provides life cycle analysis of conventional machining Discusses biomedical and industrial applications of additive manufacturing The text will be useful for senior undergraduate, graduate students, and academic researchers in areas including industrial and manufacturing engineering, mechanical engineering, and production engineering. Discussing the sustainability aspects of conventional machining in reducing carbon footprint of machining by adopting different hybrid and non-conventional machining processes, this text will be useful for senior undergraduate, graduate students, and academic researchers in areas including industrial and manufacturing engineering, mechanical engineering, and production engineering.