This book makes the case for a New Environmentalism, and using a systems change approach, takes the reader through ideas for reorienting the economy. It addresses the laws and policies needed to support the emergence of a new economy across a variety of major areas – from energy to food, across common pool resources, and shifting investments to capitalize locally-connected and mission-driven businesses. The authors take the approach that the challenges are much broader than setting parameters around pollution, and go to the heart of the dominant global political economy. It explores the values needed to transform our current economic system into a new economy supportive of ecological integrity, social justice, and vibrant democracy.
Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.
This book shows how the science of geomagnetism contributes to effective use of the magnetic compass for navigation. The book uses techniques from Geology, Instrument science, Magnetism, Chaos theory and Potential Fields applied to the geomagnetic landscape of the Balkan region and surroundings. The editors and contributors have assembled a comprehensive review of measurement, analysis, mapping and forecasting of magnetic declination in support of aeronautical safety.
This book provides an outstanding single-volume resource on the topic of solar energy for young adults and general audiences. While how much longer the world's supply of fossil fuels will last is debatable, it is a fact that the fossil fuels that we depend on so heavily today are non-renewable resources that will inevitably be exhausted—making the need to shift to alternative sources of energy such as solar extremely important. Solar Energy: A Reference Handbook presents encyclopedic coverage of the social, political, economic, and environmental issues associated with the development and use of solar energy in the United States and around the world. This book provides an in-depth description of the ways solar power has been used for at least 2,000 years. It outlines how humankind has utilized various forms of energy from the sun by way of photovoltaic cells, concentrating or focusing solar power, active and passive solar heating, and other mechanisms; and provides perspectives on today's solar energy issues from a variety of subject experts. Readers will better understand not only the advantages and disadvantages of solar power but also the critical nature of energy production to sustaining life on earth, thereby underscoring the importance of developing solar power and other alternative sources of energy to meet the world's energy needs in coming decades. The book also includes profiles of key individuals and organizations related to the field of solar energy, a chronology of important events in the history of solar energy, and a glossary that defines the key terms used in discussing the topic of solar energy.
Nanoscale science, engineering, and technology, often referred to simply as "nanotechnology," is the understanding, characterization, and control of matter at the scale of nanometers, the dimension of atoms and molecules. Advances in nanotechnology promise new materials and structures that are the basis of solutions, for example, for improving human health, optimizing available energy and water resources, supporting a vibrant economy, raising the standard of living, and increasing national security. Established in 2001, the National Nanotechnology Initiative (NNI) is a coordinated, multiagency effort with the mission to expedite the discovery, development, and deployment of nanoscale science and technology to serve the public good. This report is the latest triennial review of the NNI called for by the 21st Century Nanotechnology Research and Development Act of 2003. It examines and comments on the mechanisms in use by the NNI to advance focused areas of nanotechnology towards advanced development and commercialization and on the physical and human infrastructure needs for successful realization in the United States of the benefits of nanotechnology development.
The Small Business Innovation Research (SBIR) program is one of the largest examples of U.S. public-private partnerships, and was established in 1982 to encourage small businesses to develop new processes and products and to provide quality research in support of the U.S. government's many missions. The Small Business Technology Transfer (STTR) Program was created in 1992 by the Small Business Research and Development Enhancement Act to expand joint venture opportunities for small businesses and nonprofit research institutions by requiring small business recipients to collaborate formally with a research institution. The U.S. Congress tasked the National Research Council with undertaking a comprehensive study of how the SBIR and STTR programs have stimulated technological innovation and used small businesses to meet federal research and development needs, and with recommending further improvements to the programs. In the first round of this study, an ad hoc committee prepared a series of reports from 2004 to 2009 on the SBIR and STTR programs at the five agencies responsible for 96 percent of the programs' operations-including the Department of Energy (DoE). Building on the outcomes from the first round, this second round presents the committee's second review of the DoE SBIR program's operations. Public-private partnerships like SBIR and STTR are particularly important since today's knowledge economy is driven in large part by the nation's capacity to innovate. One of the defining features of the U.S. economy is a high level of entrepreneurial activity. Entrepreneurs in the United States see opportunities and are willing and able to assume risk to bring new welfare-enhancing, wealth-generating technologies to the market. Yet, although discoveries in areas such as genomics, bioinformatics, and nanotechnology present new opportunities, converting these discoveries into innovations for the market involves substantial challenges. The American capacity for innovation can be strengthened by addressing the challenges faced by entrepreneurs.