Long-awaited second edition of classic textbook, brought completely up to date, for courses on tropical soils, and reference for scientists and professionals.
Sulphur (S) plays a pivotal role in various plant growth and development processes being a constituent of sulphur-containing amino acids, cysteine and methionine, and other metabolites viz., glutathione and phytochelatins, co-factor of enzymes which contribute to stress repair and amelioration of heavy metal toxicity. Besides, a number of S-containing components are biologically active and, thus, a source for use as medicinal value. The basic global issue before the agricultural scientist and world community is to evolve cultivars and develop methodologies for efficient use of inputs to enhance agricultural productivity. This is particularly true of the developing countries which are going to see maximum rise in population with changing food demands and declining availability of land. Amongst the inputs, nutrients play a crucial role. The major requirement is for N, P and K followed by several micro-nutrients. In this context reports of world-wide S deficiency in the agricultural systems are relevant. The reasons are many. Broadly speaking reduction inS emission, use of S-free N, P and K fertilizers and higher biomass production contributed the maximum. Despite the need for sulphur as an essential plant nutrient and the substantial returns expected from its use, very little attention has been given to fill the gap between supply and demand of S.
Sulfur forms and cycling processes in soil and their relationship to sulfur fertility / Jeff J. Schoenau and Sukhdev S. Malhi -- Sulfur nutrition of crops in the Indo-Gangetic plains of South Asia / M.P.S. Khurana, U.S. Sandana and Bijay-Singh -- Soil sulfur cycling temperate agricultural systems / Jørgen Eriksen -- History of sulfur deficiency in crops / Silvia Haneklaus, Elke Bloem and Ewald Schnug -- Availability of sulfur to crops from soil and other sources / Warren A. Dick, David Kost and Liming Chen -- Sulfur and cysteine metabolism / Rainer Hoefgen and Holger Hesse -- Sulfur response based on crop, source, and landscape position / Dave Franzen and Cynthia A. Grant -- Sulfur management for soybean production / Kiyoko Hitsuda [and others] -- Sulfur in a fertilizer program for corn / George W. Rehm and John G. Clapp -- Sulfur nutrition and wheat quality / Hamid A. Naeem -- Sulfur and marketable yield of potato / Alexander D. Pavlista -- Sulfur, its role in onion production and related alliums / George E. Boyhan -- Sulfur and the production of rice in wetland and dryland ecosystems / Richard W. Bell -- Evaluation of the relative significance of sulfur and other essential mineral elements in oilseed rape, cereals, and sugar beet production / Ewald Schnug and Silvia Haneklaus -- Improving the sulfur-containing amino acids of soybean to enhance its nutritional value in animal feed / Hari B. Krishnan -- Methionine metabolism in plants / Rachel Amir and Yael Hacham -- Plant sulfur compounds and human health / Joseph M. Jez and Naomi K. Fukagawa -- A future crop biotechnology view of sulfur and selenium / Muhammad Sayyar Khan and Rüdiger Hell.
Degradation of soils continues at a pace that will eventually create a local, regional, or even global crisis when diminished soil resources collide with increasing climate variation. It's not too late to restore our soils to a more productive state by rediscovering the value of soil management, building on our well-established and ever-expanding scientific understanding of soils. Soil management concepts have been in place since the cultivation of crops, but we need to rediscover the principles that are linked together in effective soil management. This book is unique because of its treatment of soil management based on principles—the physical, chemical, and biological processes and how together they form the foundation for soil management processes that range from tillage to nutrient management. Whether new to soil science or needing a concise reference, readers will benefit from this book's ability to integrate the science of soils with management issues and long-term conservation efforts.
It has long been recognized that soil organic matter is the key to soil fertility. As a nutrient store it gradually provides essential elements which the soil cannot retain for long in inorganic form. It buffers growing plants against sudden changes in their chemical environment and preserves moisture in times of drought. It keeps the soil in a friable, easily penetrated physical condition, well-aerated and free draining, providing young seedlings with an excellent medium for growth. But it has another property, the nature and extent of which have been the subject of argu ment and controversy ever since scientists began to study the soil, and that is its ability to affect growth directly, other than by providing nutrient elements. Any one wishing to learn about these effects has been faced with a daunting mass of literature, some confusing, often contradictory, and spread through a multitude of journals. Individual aspects have been covered from time to time in reviews but there has obviously been a need for a modern authoritative text book dealing with the many facets of this subject, so the publication of this volume is timely. The editors and authors are all specialists in their fields, fully familiar with the com plex nature of soil organic matter and with the particular difficulties arising in any study of its properties. Where controversies exist they have presented all sides of the argument and have highlighted areas where further work is badly needed.