Analysis of Sub-synchronous Resonance (SSR) in Doubly-fed Induction Generator (DFIG)-Based Wind Farms

Analysis of Sub-synchronous Resonance (SSR) in Doubly-fed Induction Generator (DFIG)-Based Wind Farms

Author: Hossein Ali Mohammadpour

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 62

ISBN-13: 3031025016

DOWNLOAD EBOOK

Wind power penetration is rapidly increasing in today's energy generation industry. In particular, the doubly-fed induction generator (DFIG) has become a very popular option in wind farms, due to its cost advantage compared with fully rated converter-based systems. Wind farms are frequently located in remote areas, far from the bulk of electric power users, and require long transmission lines to connect to the grid. Series capacitive compensation of DFIG-based wind farm is an economical way to increase the power transfer capability of the transmission line connecting the wind farm to the grid. For example, a study performed by ABB reveals that increasing the power transfer capability of an existing transmission line from 1300 MW to 2000 MW using series compensation is 90% less expensive than building a new transmission line. However, a factor hindering the extensive use of series capacitive compensation is the potential risk of subsynchronous resonance (SSR). The SSR is a condition where the wind farm exchanges energy with the electric network, to which it is connected, at one or more natural frequencies of the electric or mechanical part of the combined system, comprising the wind farm and the network, and the frequency of the exchanged energy is below the fundamental frequency of the system. This oscillatory phenomenon may cause severe damage in the wind farm, if not prevented. Therefore, this book studies the SSR phenomenon in a capacitive series compensated wind farm. A DFIG-based wind farm, which is connected to a series compensated transmission line, is considered as a case study. The book consists of two main parts: Small-signal modeling of DFIG for SSR analysis: This part presents a step-by-step tutorial on modal analysis of a DFIG-based series compensated wind farm using Matlab/Simulink. The model of the system includes wind turbine aerodynamics, a 6th order induction generator, a 2nd order two-mass shaft system, a 4th order series compensated transmission line, a 4th order rotor-side converter (RSC) controller and a 4th order grid-side converter (GSC) controller, and a 1st order DC-link model. The relevant modes are identified using participation factor analysis. Definition of the SSR in DFIG-based wind farms: This part mainly focuses on the identification and definition of the main types of SSR that occur in DFIG wind farms, namely: (1) induction generator effect (SSIGE), (2) torsional interactions (SSTI), and (3) control interactions (SSCI).


Modeling and Analysis of Doubly Fed Induction Generator Wind Energy Systems

Modeling and Analysis of Doubly Fed Induction Generator Wind Energy Systems

Author: Lingling Fan

Publisher: Academic Press

Published: 2015-04-16

Total Pages: 154

ISBN-13: 0128029862

DOWNLOAD EBOOK

Wind Energy Systems: Modeling, Analysis and Control with DFIG provides key information on machine/converter modelling strategies based on space vectors, complex vector, and further frequency-domain variables. It includes applications that focus on wind energy grid integration, with analysis and control explanations with examples. For those working in the field of wind energy integration examining the potential risk of stability is key, this edition looks at how wind energy is modelled, what kind of control systems are adopted, how it interacts with the grid, as well as suitable study approaches. Not only giving principles behind the dynamics of wind energy grid integration system, but also examining different strategies for analysis, such as frequency-domain-based and state-space-based approaches. Focuses on real and reactive power control Supported by PSCAD and Matlab/Simulink examples Considers the difference in control objectives between ac drive systems and grid integration systems


Analysis of Subsynchronous Resonance in Power Systems

Analysis of Subsynchronous Resonance in Power Systems

Author: K.R. Padiyar

Publisher: Springer Science & Business Media

Published: 1999

Total Pages: 290

ISBN-13: 9780792383192

DOWNLOAD EBOOK

This book presents comprehensive mathematical models of turbine-generators, HVDC and FACTS controllers, and small signal analysis of SSR. The emphasis is on the analysis using linearized models. Both damping torque and eigenvalue analysis are covered. Also included are the basic concepts of SSR interactions with fixed series compensation, PSS, HVDC, and FACTS controllers. Timely treatment has been given to the development of electrical analogue for the rotor system, the derivation of the network equations based on circuit topology and immittance functions using D-Q variables. The material is supported by several illustrative examples and case studies based on IEEE benchmark models. Analysis of Subsynchronous Resonance in Power Systems is an invaluable reference work for power systems researchers, system planners, and designers.


Analysis of SSR in DFIG-based Wind Farms Connected with Series-compensated Transmission Systems Using Impedance Modeling

Analysis of SSR in DFIG-based Wind Farms Connected with Series-compensated Transmission Systems Using Impedance Modeling

Author: Yiming Zhong

Publisher:

Published: 2017

Total Pages: 62

ISBN-13:

DOWNLOAD EBOOK

In the project, an impedance model in the range of sub-synchronous frequency has been built to demonstrate an accurate representation of SSCI. All the conclusions associated with the influence of SSCI through parameter changes have been consistent with the simulation results. The results of the project can have significant effect on mitigation of SSCI DFIG-based wind power systems with series-compensated lines.


Wind Power in Power Systems

Wind Power in Power Systems

Author: Thomas Ackermann

Publisher: John Wiley & Sons

Published: 2012-04-23

Total Pages: 1132

ISBN-13: 111994208X

DOWNLOAD EBOOK

The second edition of the highly acclaimed Wind Power in Power Systems has been thoroughly revised and expanded to reflect the latest challenges associated with increasing wind power penetration levels. Since its first release, practical experiences with high wind power penetration levels have significantly increased. This book presents an overview of the lessons learned in integrating wind power into power systems and provides an outlook of the relevant issues and solutions to allow even higher wind power penetration levels. This includes the development of standard wind turbine simulation models. This extensive update has 23 brand new chapters in cutting-edge areas including offshore wind farms and storage options, performance validation and certification for grid codes, and the provision of reactive power and voltage control from wind power plants. Key features: Offers an international perspective on integrating a high penetration of wind power into the power system, from basic network interconnection to industry deregulation; Outlines the methodology and results of European and North American large-scale grid integration studies; Extensive practical experience from wind power and power system experts and transmission systems operators in Germany, Denmark, Spain, UK, Ireland, USA, China and New Zealand; Presents various wind turbine designs from the electrical perspective and models for their simulation, and discusses industry standards and world-wide grid codes, along with power quality issues; Considers concepts to increase penetration of wind power in power systems, from wind turbine, power plant and power system redesign to smart grid and storage solutions. Carefully edited for a highly coherent structure, this work remains an essential reference for power system engineers, transmission and distribution network operator and planner, wind turbine designers, wind project developers and wind energy consultants dealing with the integration of wind power into the distribution or transmission network. Up-to-date and comprehensive, it is also useful for graduate students, researchers, regulation authorities, and policy makers who work in the area of wind power and need to understand the relevant power system integration issues.


Computational Intelligence, Cyber Security and Computational Models. Models and Techniques for Intelligent Systems and Automation

Computational Intelligence, Cyber Security and Computational Models. Models and Techniques for Intelligent Systems and Automation

Author: Geetha Ganapathi

Publisher: Springer

Published: 2018-09-10

Total Pages: 262

ISBN-13: 9811307164

DOWNLOAD EBOOK

This book constitutes the proceedings of the Third International Conference on Computational Intelligence, Cyber Security, and Computational Models, ICC3 2017, which was held in Coimbatore, India, in December 2017. The 15 papers presented in this volume were carefully reviewed and selected from 63 submissions. They were organized in topical sections named: computational intelligence; cyber security; and computational models.


Recent Advances in Renewable Energy Automation and Energy Forecasting

Recent Advances in Renewable Energy Automation and Energy Forecasting

Author: Sarat Kumar Sahoo

Publisher: Frontiers Media SA

Published: 2023-12-08

Total Pages: 196

ISBN-13: 2832541674

DOWNLOAD EBOOK

The advancement of sustainable energy is becoming an important concern for many countries. The traditional electrical grid supports only one-way interaction of power being delivered to the consumers. The emergence of improved sensors, actuators, and automation technologies has consequently improved the control, monitoring and communication techniques within the energy sector, including the Smart Grid system. With the support of the aforementioned modern technologies, the information flows in two-ways between the consumer and supplier. This data communication helps the supplier in overcoming challenges like integration of renewable technologies, management of energy demand, load automation and control. Renewable energy (RE) is intermittent in nature and therefore difficult to predict. The accurate RE forecasting is very essential to improve the power system operations. The forecasting models are based on complex function combinations that include seasonality, fluctuation, and dynamic nonlinearity. The advanced intelligent computing algorithms for forecasting should consider the proper parameter determinations for achieving optimization. For this we need, new generation research areas like Machine learning (ML), and Artificial Intelligence (AI) to enable the efficient integration of distributed and renewable generation at large scale and at all voltage levels. The modern research in the above areas will improve the efficiency, reliability and sustainability in the Smart grid.