Substrate Noise Coupling in Analog/RF Circuits

Substrate Noise Coupling in Analog/RF Circuits

Author: Stephane Bronckers

Publisher: Artech House

Published: 2010

Total Pages: 272

ISBN-13: 1596932724

DOWNLOAD EBOOK

This book presents case studies to illustrate that careful modeling of the assembly characteristics and layout details is required to bring simulations and measurements into agreement. Engineers learn how to use a proper combination of isolation structures and circuit techniques to make analog/RF circuits more immune to substrate noise. Topics include substrate noise propagation, passive isolation structures, noise couple in active devices, measuring the coupling mechanisms in analog/RF circuits, prediction of the impact of substrate noise on analog/RF circuits, and noise coupling in analog/RF systems.


Substrate Noise Coupling in RFICs

Substrate Noise Coupling in RFICs

Author: Ahmed Helmy

Publisher: Springer Science & Business Media

Published: 2008-03-23

Total Pages: 129

ISBN-13: 1402081669

DOWNLOAD EBOOK

The book reports modeling and simulation techniques for substrate noise coupling effects in RFICs and introduces isolation structures and design guides to mitigate such effects with the ultimate goal of enhancing the yield of RF and mixed signal SoCs. The book further reports silicon measurements, and new test and noise isolation structures. To the authors’ knowledge, this is the first title devoted to the topic of substrate noise coupling in RFICs as part of a large SoC.


Substrate Noise Coupling in Mixed-Signal ASICs

Substrate Noise Coupling in Mixed-Signal ASICs

Author: Stéphane Donnay

Publisher: Springer Science & Business Media

Published: 2006-05-31

Total Pages: 311

ISBN-13: 0306481707

DOWNLOAD EBOOK

This book is the first in a series of three dedicated to advanced topics in Mixed-Signal IC design methodologies. It is one of the results achieved by the Mixed-Signal Design Cluster, an initiative launched in 1998 as part of the TARDIS project, funded by the European Commission within the ESPRIT-IV Framework. This initiative aims to promote the development of new design and test methodologies for Mixed-Signal ICs, and to accelerate their adoption by industrial users. As Microelectronics evolves, Mixed-Signal techniques are gaining a significant importance due to the wide spread of applications where an analog front-end is needed to drive a complex digital-processing subsystem. In this sense, Analog and Mixed-Signal circuits are recognized as a bottleneck for the market acceptance of Systems-On-Chip, because of the inherent difficulties involved in the design and test of these circuits. Specially, problems arising from the use of a common substrate for analog and digital components are a main limiting factor. The Mixed-Signal Cluster has been formed by a group of 11 Research and Development projects, plus a specific action to promote the dissemination of design methodologies, techniques, and supporting tools developed within the Cluster projects. The whole action, ending in July 2002, has been assigned an overall budget of more than 8 million EURO.


Noise Coupling in System-on-Chip

Noise Coupling in System-on-Chip

Author: Thomas Noulis

Publisher: CRC Press

Published: 2018-01-09

Total Pages: 519

ISBN-13: 1138031615

DOWNLOAD EBOOK

Noise Coupling is the root-cause of the majority of Systems on Chip (SoC) product fails. The book discusses a breakthrough substrate coupling analysis flow and modelling toolset, addressing the needs of the design community. The flow provides capability to analyze noise components, propagating through the substrate, the parasitic interconnects and the package. Using this book, the reader can analyze and avoid complex noise coupling that degrades RF and mixed signal design performance, while reducing the need for conservative design practices. With chapters written by leading international experts in the field, novel methodologies are provided to identify noise coupling in silicon. It additionally features case studies that can be found in any modern CMOS SoC product for mobile communications, automotive applications and readout front ends.


Substrate Noise

Substrate Noise

Author: Edoardo Charbon

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 178

ISBN-13: 0306481715

DOWNLOAD EBOOK

In the past decade, substrate noise has had a constant and significant impact on the design of analog and mixed-signal integrated circuits. Only recently, with advances in chip miniaturization and innovative circuit design, has substrate noise begun to plague fully digital circuits as well. To combat the effects of substrate noise, heavily over-designed structures are generally adopted, thus seriously limiting the advantages of innovative technologies. Substrate Noise: Analysis and Optimization for IC Design addresses the main problems posed by substrate noise from both an IC and a CAD designer perspective. The effects of substrate noise on performance in digital, analog, and mixed-signal circuits are presented, along with the mechanisms underlying noise generation, injection, and transport. Popular solutions to the substrate noise problem and the trade-offs often debated by designers are extensively discussed. Non-traditional approaches as well as semi-automated techniques to combat substrate noise are also addressed. Substrate Noise: Analysis and Optimization for IC Design will be of interest to researchers and professionals interested in signal integrity, as well as to mixed signal and RF designers.


Substrate Integrated Suspended Line Circuits and Systems

Substrate Integrated Suspended Line Circuits and Systems

Author: Kaixue Ma

Publisher: Artech House

Published: 2024-03-31

Total Pages: 305

ISBN-13: 1685690300

DOWNLOAD EBOOK

Substrate Integrated Suspended Line Circuits and Systems provides a systematic overview of the new transmission line - the substrate-integrated suspension line (SISL). It details the fundamentals and classical application examples of the SISL. The basic SISL concept and structure, various passive circuits and active circuits, and front-end sub-systems are systematically introduced. Featuring research on topics such as high-performance RF/microwave/mm-wave circuits and system, this book is ideal for researchers, engineers, scientists, scholars, educators, and students. Since transmission line is a fundamental component of microwave and mm-wave circuits, the properties of a transmission line, such as losses, size, and dispersion, are vital to the performance of the whole system. Suspended line has been proved to be an excellent transmission line, as it has attractive features such as low loss, weak dispersion, high power capacity, and low effective dielectric constant. However, Conventional waveguide suspended line circuits require metal housing to form air cavities which is Substrate Integrated Suspended Line Circuits and Systems essential to the operation of suspended lines circuits. Also, the metal shell should provide mechanical support and shielding, which contribute to large size and heavy weight. Meanwhile, precise mechanical fabrication and assembling are strongly required, which brings difficulties to the design and fabrication of conventional suspended line circuits, and the manufacturing cost of suspended line circuits increases correspondingly. In this book, we will introduce a new platform of high-performance transmission line, i.e. substrate integrated suspended line (SISL). SISL keeps all the merits of the suspended line while overcomes the drawbacks of conventional waveguide suspended line circuits. Moreover, it is self-packaged and highly integrated. The basic SISL concept and structure, various passive circuits and active circuits, and front-end sub-systems will be systematically introduced. Featuring research on topics such as high-performance RF/microwave/mm-wave circuits and system, this book is ideally designed for researchers, engineers, scientists, scholars, educators, and students.


Physical Design for 3D Integrated Circuits

Physical Design for 3D Integrated Circuits

Author: Aida Todri-Sanial

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 397

ISBN-13: 1498710379

DOWNLOAD EBOOK

Physical Design for 3D Integrated Circuits reveals how to effectively and optimally design 3D integrated circuits (ICs). It also analyzes the design tools for 3D circuits while exploiting the benefits of 3D technology. The book begins by offering an overview of physical design challenges with respect to conventional 2D circuits, and then each chapter delivers an in-depth look at a specific physical design topic. This comprehensive reference: Contains extensive coverage of the physical design of 2.5D/3D ICs and monolithic 3D ICs Supplies state-of-the-art solutions for challenges unique to 3D circuit design Features contributions from renowned experts in their respective fields Physical Design for 3D Integrated Circuits provides a single, convenient source of cutting-edge information for those pursuing 2.5D/3D technology.


Noise Coupling in System-on-Chip

Noise Coupling in System-on-Chip

Author: Thomas Noulis

Publisher: CRC Press

Published: 2018-01-09

Total Pages: 555

ISBN-13: 1351642782

DOWNLOAD EBOOK

Noise Coupling is the root-cause of the majority of Systems on Chip (SoC) product fails. The book discusses a breakthrough substrate coupling analysis flow and modelling toolset, addressing the needs of the design community. The flow provides capability to analyze noise components, propagating through the substrate, the parasitic interconnects and the package. Using this book, the reader can analyze and avoid complex noise coupling that degrades RF and mixed signal design performance, while reducing the need for conservative design practices. With chapters written by leading international experts in the field, novel methodologies are provided to identify noise coupling in silicon. It additionally features case studies that can be found in any modern CMOS SoC product for mobile communications, automotive applications and readout front ends.


Analysis and Solutions for Switching Noise Coupling in Mixed-Signal ICs

Analysis and Solutions for Switching Noise Coupling in Mixed-Signal ICs

Author: Xavier Aragones

Publisher: The Rosen Publishing Group

Published: 1999-04-30

Total Pages: 250

ISBN-13: 9780792385042

DOWNLOAD EBOOK

Modern microelectronic design is characterized by the integration of full systems on a single die. These systems often include large high performance digital circuitry, high resolution analog parts, high driving I/O, and maybe RF sections. Designers of such systems are constantly faced with the challenge to achieve compatibility in electrical characteristics of every section: some circuitry presents fast transients and large consumption spikes, whereas others require quiet environments to achieve resolutions well beyond millivolts. Coupling between those sections is usually unavoidable, since the entire system shares the same silicon substrate bulk and the same package. Understanding the way coupling is produced, and knowing methods to isolate coupled circuitry, and how to apply every method, is then mandatory knowledge for every IC designer. Analysis and Solutions for Switching Noise Coupling in Mixed-Signal ICs is an in-depth look at coupling through the common silicon substrate, and noise at the power supply lines. It explains the elementary knowledge needed to understand these phenomena and presents a review of previous works and new research results. The aim is to provide an understanding of the reasons for these particular ways of coupling, review and suggest solutions to noise coupling, and provide criteria to apply noise reduction. Analysis and Solutions for Switching Noise Coupling in Mixed-Signal ICs is an ideal book, both as introductory material to noise-coupling problems in mixed-signal ICs, and for more advanced designers facing this problem.


Low Power RF Circuit Design in Standard CMOS Technology

Low Power RF Circuit Design in Standard CMOS Technology

Author: Unai Alvarado

Publisher: Springer Science & Business Media

Published: 2011-10-18

Total Pages: 248

ISBN-13: 3642229875

DOWNLOAD EBOOK

Low Power Consumption is one of the critical issues in the performance of small battery-powered handheld devices. Mobile terminals feature an ever increasing number of wireless communication alternatives including GPS, Bluetooth, GSM, 3G, WiFi or DVB-H. Considering that the total power available for each terminal is limited by the relatively slow increase in battery performance expected in the near future, the need for efficient circuits is now critical. This book presents the basic techniques available to design low power RF CMOS analogue circuits. It gives circuit designers a complete guide of alternatives to optimize power consumption and explains the application of these rules in the most common RF building blocks: LNA, mixers and PLLs. It is set out using practical examples and offers a unique perspective as it targets designers working within the standard CMOS process and all the limitations inherent in these technologies.