Subspace Identification for Linear Systems

Subspace Identification for Linear Systems

Author: Peter van Overschee

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 263

ISBN-13: 1461304652

DOWNLOAD EBOOK

Subspace Identification for Linear Systems focuses on the theory, implementation and applications of subspace identification algorithms for linear time-invariant finite- dimensional dynamical systems. These algorithms allow for a fast, straightforward and accurate determination of linear multivariable models from measured input-output data. The theory of subspace identification algorithms is presented in detail. Several chapters are devoted to deterministic, stochastic and combined deterministic-stochastic subspace identification algorithms. For each case, the geometric properties are stated in a main 'subspace' Theorem. Relations to existing algorithms and literature are explored, as are the interconnections between different subspace algorithms. The subspace identification theory is linked to the theory of frequency weighted model reduction, which leads to new interpretations and insights. The implementation of subspace identification algorithms is discussed in terms of the robust and computationally efficient RQ and singular value decompositions, which are well-established algorithms from numerical linear algebra. The algorithms are implemented in combination with a whole set of classical identification algorithms, processing and validation tools in Xmath's ISID, a commercially available graphical user interface toolbox. The basic subspace algorithms in the book are also implemented in a set of Matlab files accompanying the book. An application of ISID to an industrial glass tube manufacturing process is presented in detail, illustrating the power and user-friendliness of the subspace identification algorithms and of their implementation in ISID. The identified model allows for an optimal control of the process, leading to a significant enhancement of the production quality. The applicability of subspace identification algorithms in industry is further illustrated with the application of the Matlab files to ten practical problems. Since all necessary data and Matlab files are included, the reader can easily step through these applications, and thus get more insight in the algorithms. Subspace Identification for Linear Systems is an important reference for all researchers in system theory, control theory, signal processing, automization, mechatronics, chemical, electrical, mechanical and aeronautical engineering.


Subspace Methods for System Identification

Subspace Methods for System Identification

Author: Tohru Katayama

Publisher: Springer Science & Business Media

Published: 2005-10-11

Total Pages: 400

ISBN-13: 184628158X

DOWNLOAD EBOOK

An in-depth introduction to subspace methods for system identification in discrete-time linear systems thoroughly augmented with advanced and novel results, this text is structured into three parts. Part I deals with the mathematical preliminaries: numerical linear algebra; system theory; stochastic processes; and Kalman filtering. Part II explains realization theory as applied to subspace identification. Stochastic realization results based on spectral factorization and Riccati equations, and on canonical correlation analysis for stationary processes are included. Part III demonstrates the closed-loop application of subspace identification methods. Subspace Methods for System Identification is an excellent reference for researchers and a useful text for tutors and graduate students involved in control and signal processing courses. It can be used for self-study and will be of interest to applied scientists or engineers wishing to use advanced methods in modeling and identification of complex systems.


Subspace Methods for System Identification

Subspace Methods for System Identification

Author: Tohru Katayama

Publisher: Springer Science & Business Media

Published: 2005-06-15

Total Pages: 418

ISBN-13: 9781852339814

DOWNLOAD EBOOK

An in-depth introduction to subspace methods for system identification in discrete-time linear systems thoroughly augmented with advanced and novel results, this text is structured into three parts. Part I deals with the mathematical preliminaries: numerical linear algebra; system theory; stochastic processes; and Kalman filtering. Part II explains realization theory as applied to subspace identification. Stochastic realization results based on spectral factorization and Riccati equations, and on canonical correlation analysis for stationary processes are included. Part III demonstrates the closed-loop application of subspace identification methods. Subspace Methods for System Identification is an excellent reference for researchers and a useful text for tutors and graduate students involved in control and signal processing courses. It can be used for self-study and will be of interest to applied scientists or engineers wishing to use advanced methods in modeling and identification of complex systems.


State Space Modeling of Time Series

State Space Modeling of Time Series

Author: Masanao Aoki

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 324

ISBN-13: 3642969852

DOWNLOAD EBOOK

model's predictive capability? These are some of the questions that need to be answered in proposing any time series model construction method. This book addresses these questions in Part II. Briefly, the covariance matrices between past data and future realizations of time series are used to build a matrix called the Hankel matrix. Information needed for constructing models is extracted from the Hankel matrix. For example, its numerically determined rank will be the di mension of the state model. Thus the model dimension is determined by the data, after balancing several sources of error for such model construction. The covariance matrix of the model forecasting error vector is determined by solving a certain matrix Riccati equation. This matrix is also the covariance matrix of the innovation process which drives the model in generating model forecasts. In these model construction steps, a particular model representation, here referred to as balanced, is used extensively. This mode of model representation facilitates error analysis, such as assessing the error of using a lower dimensional model than that indicated by the rank of the Hankel matrix. The well-known Akaike's canonical correlation method for model construc tion is similar to the one used in this book. There are some important differ ences, however. Akaike uses the normalized Hankel matrix to extract canonical vectors, while the method used in this book does not normalize the Hankel ma trix.


Multivariable System Identification For Process Control

Multivariable System Identification For Process Control

Author: Y. Zhu

Publisher: Elsevier

Published: 2001-10-08

Total Pages: 373

ISBN-13: 0080537111

DOWNLOAD EBOOK

Systems and control theory has experienced significant development in the past few decades. New techniques have emerged which hold enormous potential for industrial applications, and which have therefore also attracted much interest from academic researchers. However, the impact of these developments on the process industries has been limited.The purpose of Multivariable System Identification for Process Control is to bridge the gap between theory and application, and to provide industrial solutions, based on sound scientific theory, to process identification problems. The book is organized in a reader-friendly way, starting with the simplest methods, and then gradually introducing more complex techniques. Thus, the reader is offered clear physical insight without recourse to large amounts of mathematics. Each method is covered in a single chapter or section, and experimental design is explained before any identification algorithms are discussed. The many simulation examples and industrial case studies demonstrate the power and efficiency of process identification, helping to make the theory more applicable. MatlabTM M-files, designed to help the reader to learn identification in a computing environment, are included.


Identification of Dynamic Systems

Identification of Dynamic Systems

Author: Rolf Isermann

Publisher: Springer

Published: 2011-04-08

Total Pages: 705

ISBN-13: 9783540871552

DOWNLOAD EBOOK

Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.


Renewable Integrated Power System Stability and Control

Renewable Integrated Power System Stability and Control

Author: Hêmin Golpîra

Publisher: John Wiley & Sons

Published: 2021-03-24

Total Pages: 322

ISBN-13: 1119689775

DOWNLOAD EBOOK

RENEWABLE INTEGRATED POWER SYSTEM STABILITY AND CONTROL Discover new challenges and hot topics in the field of penetrated power grids in this brand-new interdisciplinary resource Renewable Integrated Power System Stability and Control delivers a comprehensive exploration of penetrated grid dynamic analysis and new trends in power system modeling and dynamic equivalencing. The book summarizes long-term academic research outcomes and contributions and exploits the authors’ extensive practical experiences in power system dynamics and stability to offer readers an insightful analysis of modern power grid infrastructure. In addition to the basic principles of penetrated power system modeling, model reduction, and model derivation, the book discusses inertia challenge requirements and control levels, as well as recent advances in visualization of virtual synchronous generators and their associated effects on system performance. The physical constraints and engineering considerations of advanced control schemes are deliberated at length. Renewable Integrated Power System Stability and Control also considers robust and adaptive control strategies using real-time simulations and experimental studies. Readers will benefit from the inclusion of: A thorough introduction to power systems, including time horizon studies, structure, power generation options, energy storage systems, and microgrids An exploration of renewable integrated power grid modeling, including basic principles, host grid modeling, and grid-connected MG equivalent models A study of virtual inertia, including grid stability enhancement, simulations, and experimental results A discussion of renewable integrated power grid stability and control, including small signal stability assessment and the frequency point of view Perfect for engineers and operators in power grids, as well as academics studying the technology, Renewable Integrated Power System Stability and Control will also earn a place in the libraries of students in Electrical Engineering programs at the undergraduate and postgraduate levels who wish to improve their understanding of power system operation and control.


Optimization Methods Applied to Power Systems

Optimization Methods Applied to Power Systems

Author: Francisco G. Montoya

Publisher: MDPI

Published: 2019-07-26

Total Pages: 382

ISBN-13: 3039211307

DOWNLOAD EBOOK

This book presents an interesting sample of the latest advances in optimization techniques applied to electrical power engineering. It covers a variety of topics from various fields, ranging from classical optimization such as Linear and Nonlinear Programming and Integer and Mixed-Integer Programming to the most modern methods based on bio-inspired metaheuristics. The featured papers invite readers to delve further into emerging optimization techniques and their real application to case studies such as conventional and renewable energy generation, distributed generation, transport and distribution of electrical energy, electrical machines and power electronics, network optimization, intelligent systems, advances in electric mobility, etc.


Inter-area Oscillations in Power Systems

Inter-area Oscillations in Power Systems

Author: Arturo Roman Messina

Publisher: Springer Science & Business Media

Published: 2009-04-21

Total Pages: 278

ISBN-13: 0387895302

DOWNLOAD EBOOK

The study of complex dynamic processes governed by nonlinear and nonstationary characteristics is a problem of great importance in the analysis and control of power system oscillatory behavior. Power system dynamic processes are highly random, nonlinear to some extent, and intrinsically nonstationary even over short time intervals as in the case of severe transient oscillations in which switching events and control actions interact in a complex manner. Phenomena observed in power system oscillatory dynamics are diverse and complex. Measured ambient data are known to exhibit noisy, nonstationary fluctuations resulting primarily from small magnitude, random changes in load, driven by low-scale motions or nonlinear trends originating from slow control actions or changes in operating conditions. Forced oscillations resulting from major cascading events, on the other hand, may contain motions with a broad range of scales and can be highly nonlinear and time-varying. Prediction of temporal dynamics, with the ultimate application to real-time system monitoring, protection and control, remains a major research challenge due to the complexity of the driving dynamic and control processes operating on various temporal scales that can become dynamically involved. An understanding of system dynamics is critical for reliable inference of the underlying mechanisms in the observed oscillations and is needed for the development of effective wide-area measurement and control systems, and for improved operational reliability.