Modeling of Atmospheric Chemistry

Modeling of Atmospheric Chemistry

Author: Guy P. Brasseur

Publisher: Cambridge University Press

Published: 2017-06-19

Total Pages: 631

ISBN-13: 1108210953

DOWNLOAD EBOOK

Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopaedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavour, bringing together meteorology, radiative transfer, physical chemistry and biogeochemistry, making the book of value to a broad readership. Introductory chapters and a review of the relevant mathematics make this book instantly accessible to graduate students and researchers in the atmospheric sciences.


Large-Eddy Simulations of Turbulence

Large-Eddy Simulations of Turbulence

Author: M. Lesieur

Publisher: Cambridge University Press

Published: 2005-08-22

Total Pages: 240

ISBN-13: 9780521781244

DOWNLOAD EBOOK

Large-Eddy Simulations of Turbulence is a reference for LES, direct numerical simulation and Reynolds-averaged Navier-Stokes simulation.


Modelling and Simulation of Turbulent Heat Transfer

Modelling and Simulation of Turbulent Heat Transfer

Author: B. Sundén

Publisher: WIT Press

Published: 2005-02-21

Total Pages: 361

ISBN-13: 1853129569

DOWNLOAD EBOOK

Providing invaluable information for both graduate researchers and R & D engineers in industry and consultancy, this book focuses on the modelling and simulation of fluid flow and thermal transport phenomena in turbulent convective flows. Its overall objective is to present state-of-the-art knowledge in order to predict turbulent heat transfer processes in fundamental and idealized flows as well as in engineering applications. The chapters, which are invited contributions from some of the most prominent scientists in this field, cover a wide range of topics and follow a unified outline and presentation to aid accessibility.


Turbulent Combustion Modeling

Turbulent Combustion Modeling

Author: Tarek Echekki

Publisher: Springer Science & Business Media

Published: 2010-12-25

Total Pages: 496

ISBN-13: 9400704127

DOWNLOAD EBOOK

Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.


Engineering Turbulence Modelling and Experiments 6

Engineering Turbulence Modelling and Experiments 6

Author: Wolfgang Rodi

Publisher: Elsevier

Published: 2005-05-05

Total Pages: 1011

ISBN-13: 0080530958

DOWNLOAD EBOOK

Proceedings of the world renowned ERCOFTAC (International Symposium on Engineering Turbulence Modelling and Measurements).The proceedings include papers dealing with the following areas of turbulence:·Eddy-viscosity and second-order RANS models ·Direct and large-eddy simulations and deductions for conventional modelling ·Measurement and visualization techniques, experimental studies ·Turbulence control ·Transition and effects of curvature, rotation and buoyancy on turbulence ·Aero-acoustics ·Heat and mass transfer and chemically reacting flows ·Compressible flows, shock phenomena ·Two-phase flows ·Applications in aerospace engineering, turbomachinery and reciprocating engines, industrial aerodynamics and wind engineering, and selected chemical engineering problems Turbulence remains one of the key issues in tackling engineering flow problems. These problems are solved more and more by CFD analysis, the reliability of which depends strongly on the performance of the turbulence models employed. Successful simulation of turbulence requires the understanding of the complex physical phenomena involved and suitable models for describing the turbulent momentum, heat and mass transfer. For the understanding of turbulence phenomena, experiments are indispensable, but they are equally important for providing data for the development and testing of turbulence models and hence for CFD software validation. As in other fields of Science, in the rapidly developing discipline of turbulence, swift progress can be achieved only by keeping up to date with recent advances all over the world and by exchanging ideas with colleagues active in related fields.


Turbulent Shear Flows I

Turbulent Shear Flows I

Author: F. Durst

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 415

ISBN-13: 3642463959

DOWNLOAD EBOOK

The present book contains papers that have been selected from contributions to the First International Symposium on Turbulent Shear Flows which was held from the 18th to 20th April 1977 at The Pennsylvania State University, University Park, Pennsylvania, USA. Attend ees from close to 20 countries presented over 100 contributions at this meeting in which many aspects of the current activities in turbulence research were covered. Five topics received particular attention at the Symposium: Free Flows Wall Flows Recirculating Flows Developments in Reynolds Stress Closures New Directions in Modeling This is also reflected in the five chapters of this book with contributions from research workers from different countries. Each chapter covers the most valuable contributions of the conference to the particular chapter topic. Of course, there were many additional good con tributions to each subject at the meeting but the limitation imposed on the length of this volume required that a selection be made. The realization of the First International Symposium on Turbulent Shear Flows was p- sible by the general support of: U. S. Army Research Office U. S. Navy Research Office Continuing Education Center of The Pennsylvania State University The conference organization was carried out by the organizing committee consisting of: F. Durst, Universitat Karlsruhe, Karlsruhe, Fed. Rep. of Germany V. W. Goldschmidt, Purdue University, West Lafayette, Ind. , USA B. E. Launder, University of California, Davis, Calif. , USA F. W. Schmidt, Pennsylvania State University, University Park, Penna.


Turbulent Premixed Flames

Turbulent Premixed Flames

Author: Nedunchezhian Swaminathan

Publisher: Cambridge University Press

Published: 2011-04-25

Total Pages: 447

ISBN-13: 1139498584

DOWNLOAD EBOOK

A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.


Large Eddy Simulation for Incompressible Flows

Large Eddy Simulation for Incompressible Flows

Author: P. Sagaut

Publisher: Springer Science & Business Media

Published: 2006

Total Pages: 600

ISBN-13: 9783540263449

DOWNLOAD EBOOK

First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."


Direct and Large Eddy Simulation of Turbulence

Direct and Large Eddy Simulation of Turbulence

Author: NA Schumann

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 350

ISBN-13: 3663001970

DOWNLOAD EBOOK

This volume contains papers presented to a EUROMECH-Colloquium held in Munich, September 30 to October 2, 1985. The Colloquium is number 199 in a series of colloquia inaugurated by the European Mechanics Committee. The meeting was jointly organized by the 'Lehrstuhl fur Stromungsmechanik' at the 'Technische Universitat Munchen' and the 'Institut fur Physik der Atmosphare' of the 'Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt' (DFVLR) in Oberpfaffenhofen. 'Direct' and 'large eddy simulation' are terms which denote two closely con nected methods of turbulence research. In a 'direct simulation' (DS), turbu lent motion is simulated by numerically integrating the Navier-Stokes equations in three-dimensional space and as a function of time. Besides ini tial and boundary conditions no physical simplifications are involved. Com puter resources limit the resolution in time and space, though simulations with an order of one million discrete points in space are feasible. The simu lated flow fields can be considered as true realizations of turbulent flow fields and analysed to answer questions on the basic behaviour of turbulence. Direct simulations are valid as long as all the excited scales remain within the band of resolved scales. This means that viscosity must be strong enough to damp out the not resolved scales or the simulation is restricted to a lim ited integration-time interval only. In summary, DS provides a tool to investigate turbulent motions from first principles at least for a finite band of scales.