This paper aims to explore the algebra structure of refined neutrosophic numbers. Firstly, the algebra structure of neutrosophic quadruple numbers on a general field is studied. Secondly, The addition operator and multiplication operator on refined neutrosophic numbers are proposed and the algebra structure is discussed. We reveal that the set of neutrosophic refined numbers with an additive operation is an abelian group and the set of neutrosophic refined numbers with a multiplication operation is a neutrosophic extended triplet group. Moreover, algorithms for solving the neutral element and opposite elements of each refined neutrosophic number are given.
Neutrosophic theory and its applications have been expanding in all directions at an astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structures such as rough neutrosophic set, single valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are proposed in the literature in a short period of time. Neutrosophic set has been an important tool in the application of various areas such as data mining, decision making, e-learning, engineering, medicine, social science, and some more.
International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. IJNS is published quarterly. IJNS is devoted to the publication of peer-reviewed original research papers lying in the domain of neutrosophic sets and systems. Papers submitted for possible publication may concern with foundations, neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributing to economics, finance, management, industries, electronics, and communications are promoted.
International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. IJNS is published quarterly. IJNS is devoted to the publication of peer-reviewed original research papers lying in the domain of neutrosophic sets and systems. Papers submitted for possible publication may concern with foundations, neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributing to economics, finance, management, industries, electronics, and communications are promoted.
This ninth volume of Collected Papers includes 87 papers comprising 982 pages on Neutrosophic Theory and its applications in Algebra, written between 2014-2022 by the author alone or in collaboration with the following 81 co-authors (alphabetically ordered) from 19 countries: E.O. Adeleke, A.A.A. Agboola, Ahmed B. Al-Nafee, Ahmed Mostafa Khalil, Akbar Rezaei, S.A. Akinleye, Ali Hassan, Mumtaz Ali, Rajab Ali Borzooei , Assia Bakali, Cenap Özel, Victor Christianto, Chunxin Bo, Rakhal Das, Bijan Davvaz, R. Dhavaseelan, B. Elavarasan, Fahad Alsharari, T. Gharibah, Hina Gulzar, Hashem Bordbar, Le Hoang Son, Emmanuel Ilojide, Tèmítópé Gbóláhàn Jaíyéolá, M. Karthika, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Huma Khan, Madad Khan, Mohsin Khan, Hee Sik Kim, Seon Jeong Kim, Valeri Kromov, R. M. Latif, Madeleine Al-Tahan, Mehmat Ali Ozturk, Minghao Hu, S. Mirvakili, Mohammad Abobala, Mohammad Hamidi, Mohammed Abdel-Sattar, Mohammed A. Al Shumrani, Mohamed Talea, Muhammad Akram, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Gulistan, Muhammad Shabir, G. Muhiuddin, Memudu Olaposi Olatinwo, Osman Anis, Choonkil Park, M. Parimala, Ping Li, K. Porselvi, D. Preethi, S. Rajareega, N. Rajesh, Udhayakumar Ramalingam, Riad K. Al-Hamido, Yaser Saber, Arsham Borumand Saeid, Saeid Jafari, Said Broumi, A.A. Salama, Ganeshsree Selvachandran, Songtao Shao, Seok-Zun Song, Tahsin Oner, M. Mohseni Takallo, Binod Chandra Tripathy, Tugce Katican, J. Vimala, Xiaohong Zhang, Xiaoyan Mao, Xiaoying Wu, Xingliang Liang, Xin Zhou, Yingcang Ma, Young Bae Jun, Juanjuan Zhang.
This volume is a collection of thirteen papers, written by different authors and co-authors (listed in the order of the papers): J. J. Peng and J. Q. Wang, E. Marei, S. Kar, K. Basu, S. Mukherjee, I. M. Hezam, M. Abdel-Baset and F. Smarandache, K. Mondal, S. Pramanik, A. Ionescu, M. R. Praveen and P. Sekar, B. Teodorescu, D. Kour and K. Basu, P. P. Dey and B. C. Giri, A. A. A. Agboola. In first paper, the authors studied Multi-valued Neutrosophic Sets and its Application in Multi-criteria Decision-Making Problems. More on neutrosophic soft rough sets and its modification is discussed in the second paper. Solution of Multi-Criteria Assignment Problem using Neutrosophic Set Theory are studied in third paper. In fourth paper, Taylor Series Approximation to Solve Neutrosophic Multiobjective Programming Problem. Similarly in fifth paper, Decision Making Based on Some similarity Measures under Interval Rough Neutrosophic Environment is discussed. In paper six, Neutralité neutrosophique et expressivité dans le style journalistique is studied by the author. Neutrosophic Semilattices and Their Properties given in seventh paper. Liminality and Neutrosophy is proposed in the next paper. Application of Extended Fuzzy Program-ming Technique to a real life Transportation Problem in Neutrosophic environment in the next paper. Further, TOPSIS for Single Valued Neutrosophic Soft Expert Set Based Multi-attribute Decision Making Problems is discussed by the authors in the tenth paper. In eleventh paper, Neutrosophic Quadruple Numbers, Refined Neutrosophic Quadruple Numbers, Absorbance Law, and the Multiplication of Neutrosophic Quadruple Numbers have been studied by the author. In the next paper, On Refined Neutrosophic Algebraic Structures. At the end, Neutrosophic Actions, Prevalence Order, Refinement of Neutrosophic Entities, and Neutrosophic Literal Logical Operators are introduced by the authors.
After introducing the notion of hyperstructures about 80 years ago by F. Marty, a number of researches on its theory, generalization, and it’s applications have been done. On the other hand, the theory of Neutrosophy, the study of neutralities, was developed in 1995 by F. Smarandache as an extension of dialectics. This paper aims at finding a connection between refined neutrosophy of sets and hypergroups. In this regard, we define refined neutrosophic quadruple hypergroups, study their properties, and find their fundamental refined neutrosophic quadruple groups. Moreover, some results related to refined neutrosophic quadruple po-hypergroups are obtained.
This volume is a collection of ten papers by contributors F. Smarandache, F. Yuhua, K. Mondal, S. Pramanik, S. Broumi, J. Ye, A. A. Salama,, N. Easa, S. A. Elhafez, M. M. Lotfy, L. Kong, Y. Wu, P. Biswas, B. C. Giri, A. Mukkerjee, and S. Sarkar, focusing on a new kind of algebraic structures called (T, I, F)- Neutrosophic Structures; Expanding Uncertainty Principle to Certainty-Uncertainty Principles with Neutrosophy and Quad-stage Methods; Rough Neutrosophic Multi-Attribute Decision-Making Based on Rough Accuracy Score Function; an Extended TOPSIS Method for Multiple Attribute Decision Making based on Interval Neutrosophic Uncertain Linguistic Variable; Review of Recommender Systems Algorithms Utilized in Social Networks based e-Learning Systems & Neutrosophic System; Fault Diagnosis Method of Gasoline Engines Using the Cosine Similarity Measure of Neutrosophic Numbers; Cosine Similarity Measure Based Multi-attribute Decision-making with Trapezoidal Fuzzy Neutrosophic Numbers; Thesis-Antithesis-Neutrothesis, and Neutrosynthesis; Negating Four Color Theorem with Neutrosophy and Quadstage Method; and A new method of measuring similarity between two neutrosophic soft sets and its application in pattern recognition problems.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.