Study of Very Forward Energy and Its Correlation with Particle Production at Midrapidity in Pp and P-Pb Collisions at the LHC

Study of Very Forward Energy and Its Correlation with Particle Production at Midrapidity in Pp and P-Pb Collisions at the LHC

Author: Shreyasi Acharya

Publisher:

Published: 2022

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

The energy deposited at very forward rapidities (very forward energy) is a powerful tool for characterising proton fragmentation in pp and p-Pb collisions. The correlation of very forward energy with particle production at midrapidity provides direct insights into the initial stages and the subsequent evolution of the collision. Furthermore, the correlation with the production of particles with large transverse momenta at midrapidity provides information complementary to the measurements of the underlying event, which are usually interpreted in the framework of models implementing centrality-dependent multiple parton interactions. Results about very forward energy, measured by the ALICE zero degree calorimeters (ZDCs), and its dependence on the activity measured at midrapidity in pp collisions at s√ = 13 TeV and in p-Pb collisions at sNN---√ = 8.16 TeV are discussed. The measurements performed in pp collisions are compared with the expectations of three hadronic interaction event generators: PYTHIA 6 (Perugia 2011 tune), PYTHIA 8 (Monash tune), and EPOS LHC. These results provide new constraints on the validity of models in describing the beam remnants at very forward rapidities, where perturbative QCD cannot be used.


High Energy Physics 99 Proceedings of the International Europhysics Conference on High Energy Physics, Tampere, Finland, 15-21 July 1999

High Energy Physics 99 Proceedings of the International Europhysics Conference on High Energy Physics, Tampere, Finland, 15-21 July 1999

Author: K Huitu

Publisher: CRC Press

Published: 2000-01-01

Total Pages: 1112

ISBN-13: 9780750306614

DOWNLOAD EBOOK

High Energy Physics 99 contains the 18 invited plenary presentations and 250 contributions to parallel sessions presented at the International Europhysics Conference on High Energy Physics. The book provides a comprehensive survey of the latest developments in high energy physics. Topics discussed include hard high energy, structure functions, soft interactions, heavy flavor, the standard model, hadron spectroscopy, neutrino masses, particle astrophysics, field theory, and detector development.


Forward Energy Flow, Central Charged-particle Multiplicities, and Pseudorapidity Gaps in W and Z Boson Events from Pp Collisions at $\sqrt{s}

Forward Energy Flow, Central Charged-particle Multiplicities, and Pseudorapidity Gaps in W and Z Boson Events from Pp Collisions at $\sqrt{s}

Author:

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

A study of forward energy flow and central charged-particle multiplicity in events with W and Z bosons decaying into leptons is presented. The analysis uses a sample of 7 TeV pp collisions, corresponding to an integrated luminosity of 36 inverse picobarns, recorded by the CMS experiment at the LHC. The observed forward energy depositions, their correlations, and the central charged-particle multiplicities are not well described by the available non-diffractive soft-hadron production models. A study of about 300 events with no significant energy deposited in one of the forward calorimeters, corresponding to a pseudorapidity gap of at least 1.9 units, is also presented. An indication for a diffractive component in these events comes from the observation that the majority of the charged leptons from the (W/Z) decays are found in the hemisphere opposite to the gap. When fitting the signed lepton pseudorapidity distribution of these events with predicted distributions from an admixture of diffractive (POMPYT) and non-diffractive (PYTHIA) Monte Carlo simulations, the diffractive component is determined to be (50.0 +/- 9.3 (stat.) +/- 5.2 (syst.))%.


Measurement of the D0 Meson Production in Pb–Pb and p–Pb Collisions

Measurement of the D0 Meson Production in Pb–Pb and p–Pb Collisions

Author: Andrea Festanti

Publisher: Springer

Published: 2016-09-07

Total Pages: 184

ISBN-13: 3319434551

DOWNLOAD EBOOK

This thesis presents the first measurement of charmed D0 meson production relative to the reaction plane in Pb–Pb collisions at the center-of-mass energy per nucleon-nucleon collision of √sNN = 2.76 TeV. It also showcases the measurement of the D0 production in p–Pb collisions at √sNN = 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement of the D0 azimuthal anisotropy with respect to the reaction plane indicates that low- momentum charm quarks participate in the collective expansion of the high-density, strongly interacting medium formed in ultra-relativistic heavy-ion collisions, despite their large mass. This behavior can be explained by charm hadronization via recombination with light quarks from the medium and collisional energy loss. The measurement of the D0 production in p–Pb collisions is crucial to separate the effect induced by cold nuclear matter from the final- state effects induced by the hot medium formed in Pb–Pb collisions. The D0 production in p–Pb collisions is consistent with the binary collision scaling of the production in pp collisions, demonstrating that the modification of the momentum distribution observed in Pb–Pb collisions with respect to pp is predominantly induced by final-state effects such as the charm energy loss.


Phenomenology Of Ultra-relativistic Heavy-ion Collisions

Phenomenology Of Ultra-relativistic Heavy-ion Collisions

Author: Wojciech Florkowski

Publisher: World Scientific Publishing Company

Published: 2010-03-24

Total Pages: 437

ISBN-13: 9813107596

DOWNLOAD EBOOK

This book gives an introduction to main ideas used in the physics of ultra-relativistic heavy-ion collisions. The links between basic theoretical concepts (discussed gradually from the elementary to more advanced level) and the results of experiments are outlined, so that experimentalists may learn more about the foundations of the models used by them to fit and interpret the data, while theoreticians may learn more about how different theoretical ideas are used in practical applications. The main task of the book is to collect the available information and establish a uniform picture of ultra-relativistic heavy-ion collisions. The properties of hot and dense matter implied by this picture are discussed comprehensively. In particular, the issues concerning the formation of the quark-gluon plasma in present and future heavy-ion experiments are addressed.


Machine Learning under Resource Constraints - Discovery in Physics

Machine Learning under Resource Constraints - Discovery in Physics

Author: Katharina Morik

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2022-12-31

Total Pages: 406

ISBN-13: 3110786133

DOWNLOAD EBOOK

Machine Learning under Resource Constraints addresses novel machine learning algorithms that are challenged by high-throughput data, by high dimensions, or by complex structures of the data in three volumes. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Hence, modern computer architectures play a significant role. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are executed on diverse architectures to save resources. It provides a comprehensive overview of the novel approaches to machine learning research that consider resource constraints, as well as the application of the described methods in various domains of science and engineering. Volume 2 covers machine learning for knowledge discovery in particle and astroparticle physics. Their instruments, e.g., particle detectors or telescopes, gather petabytes of data. Here, machine learning is necessary not only to process the vast amounts of data and to detect the relevant examples efficiently, but also as part of the knowledge discovery process itself. The physical knowledge is encoded in simulations that are used to train the machine learning models. At the same time, the interpretation of the learned models serves to expand the physical knowledge. This results in a cycle of theory enhancement supported by machine learning.


Particle Production in P-Pb Collisions with ALICE at the LHC

Particle Production in P-Pb Collisions with ALICE at the LHC

Author: Alberica Toia

Publisher:

Published: 2016

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Measurements of the transverse momentum spectra of light flavor particles at intermediate and high pT are an important tool for QCD studies. In pp collisions they provide a baseline for perturbative QCD, while in Pb-Pb they are used to investigate the suppression caused by the surrounding medium. In p-Pb collisions, such measurements provide a reference to disentangle final from initial state effects and thus play an important role in the search for signatures of the formation of a deconfined hot medium. While the comparison of the p-Pb and Pb-Pb data indicates that initial state effects do not play a role in the suppression of hadron production observed at high pT in heavy ion collisions, several measurements of particle production in the low and intermediate pT region indicate the presence of collective effects.


Principles Of Phase Structures In Particle Physics

Principles Of Phase Structures In Particle Physics

Author: Hildegard Meyer-ortmanns

Publisher: World Scientific

Published: 2006-12-06

Total Pages: 702

ISBN-13: 9814496278

DOWNLOAD EBOOK

The phase structure of particle physics shows up in matter at extremely high densities and/or temperatures as they were reached in the early universe, shortly after the big bang, or in heavy-ion collisions, as they are performed nowadays in laboratory experiments. In contrast to phase transitions of condensed matter physics, the underlying fundamental theories are better known than their macroscopic manifestations in phase transitions. These theories are quantum chromodynamics for the strong interaction part and the electroweak part of the Standard Model for the electroweak interaction. It is their non-Abelian gauge structure that makes it a big challenge to predict the type of phase conversion between phases of different symmetries and different particle contents. The book is about a variety of analytical and numerical tools that are needed to study the phase structure of particle physics. To these belong convergent and asymptotic expansions in strong and weak couplings, dimensional reduction, renormalization group studies, gap equations, Monte Carlo simulations with and without fermions, finite-size and finite-mass scaling analyses, and the approach of effective actions as supplement to first-principle calculations.