Study of the Critical Points at Infinity Arising from the Failure of the Palais-Smale Condition for n-Body Type Problems

Study of the Critical Points at Infinity Arising from the Failure of the Palais-Smale Condition for n-Body Type Problems

Author: Hasna Riahi

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 127

ISBN-13: 0821808737

DOWNLOAD EBOOK

In this work, the author examines the following: When the Hamiltonian system $m i \ddot{q} i + (\partial V/\partial q i) (t,q) =0$ with periodicity condition $q(t+T) = q(t),\; \forall t \in \germ R$ (where $q {i} \in \germ R{\ell}$, $\ell \ge 3$, $1 \le i \le n$, $q = (q {1},...,q {n})$ and $V = \sum V {ij}(t,q {i}-q {j})$ with $V {ij}(t,\xi)$ $T$-periodic in $t$ and singular in $\xi$ at $\xi = 0$) is posed as a variational problem, the corresponding functional does not satisfy the Palais-Smale condition and this leads to the notion of critical points at infinity. This volume is a study of these critical points at infinity and of the topology of their stable and unstable manifolds. The potential considered here satisfies the strong force hypothesis which eliminates collision orbits. The details are given for 4-body type problems then generalized to n-body type problems.


Study of the Critical Points at Infinity Arising from the Failure of the Palais-Smale Condition for N-Body Type Problems

Study of the Critical Points at Infinity Arising from the Failure of the Palais-Smale Condition for N-Body Type Problems

Author: Hasna Riahi

Publisher: American Mathematical Society(RI)

Published: 2014-09-11

Total Pages: 127

ISBN-13: 9781470402471

DOWNLOAD EBOOK

In this work, the author examines the following: When the Hamiltonian system $m_i \ddot{q}_i + (\partial V/\partial q_i) (t, q) =0$ with periodicity condition $q(t+T) = q(t), \; \forall t \in \germ R$ (where $q_{i} \in \germ R \ell}$, $\ell \ge 3$, $1 \le i \le n$, $q = (q_{1}, ..., q_{n})$ and $V = \sum V_{ij}(t, q_{i}-q_{j})$ with $V_{ij}(t, \xi)$ $T$-periodic in $t$ and singular in $\xi$ at $\xi = 0$) is posed as a variational problem, the corresponding functional does not satisfy the Palais-Smale condition and this leads to the notion of critical points at infinity. This volume is a study of these critical points at infinity and of the topology of their stable and unstable mani


Variational And Local Methods In The Study Of Hamiltonian Systems - Proceedings Of The Workshop

Variational And Local Methods In The Study Of Hamiltonian Systems - Proceedings Of The Workshop

Author: Antonio Ambrosetti

Publisher: World Scientific

Published: 1995-09-30

Total Pages: 224

ISBN-13: 9814548340

DOWNLOAD EBOOK

In this volume, various ideas about Hamiltonian dynamics were discussed. Particular emphasis was placed on mechanical systems with singular potentials (such as the N-Body Newtonian problem) and on their special features, although important aspects of smooth dynamics were also discussed, from both the local point of view and the point of view of global analysis.


Geometry and Topology of Configuration Spaces

Geometry and Topology of Configuration Spaces

Author: Edward R. Fadell

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 314

ISBN-13: 3642564461

DOWNLOAD EBOOK

With applications in mind, this self-contained monograph provides a coherent and thorough treatment of the configuration spaces of Euclidean spaces and spheres, making the subject accessible to researchers and graduates with a minimal background in classical homotopy theory and algebraic topology.


Periodic, Quasi-Periodic and Chaotic Motions in Celestial Mechanics: Theory and Applications

Periodic, Quasi-Periodic and Chaotic Motions in Celestial Mechanics: Theory and Applications

Author: Alessandra Celletti

Publisher: Springer Science & Business Media

Published: 2007-02-02

Total Pages: 434

ISBN-13: 1402053258

DOWNLOAD EBOOK

The book provides the most recent advances of Celestial Mechanics, as provided by high-level scientists working in this field. It covers theoretical investigations as well as applications to concrete problems. Outstanding review papers are included in the book and they introduce the reader to leading subjects, like the variational approaches to find periodic orbits and the space debris polluting the circumterrestrial space.


Mathematics of Complexity and Dynamical Systems

Mathematics of Complexity and Dynamical Systems

Author: Robert A. Meyers

Publisher: Springer Science & Business Media

Published: 2011-10-05

Total Pages: 1885

ISBN-13: 1461418054

DOWNLOAD EBOOK

Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.


Energy Research Abstracts

Energy Research Abstracts

Author:

Publisher:

Published: 1993

Total Pages: 906

ISBN-13:

DOWNLOAD EBOOK

Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.


Layer Potentials, the Hodge Laplacian, and Global Boundary Problems in Nonsmooth Riemannian Manifolds

Layer Potentials, the Hodge Laplacian, and Global Boundary Problems in Nonsmooth Riemannian Manifolds

Author: Dorina Mitrea

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 137

ISBN-13: 082182659X

DOWNLOAD EBOOK

The general aim of the present monograph is to study boundary-value problems for second-order elliptic operators in Lipschitz sub domains of Riemannian manifolds. In the first part (ss1-4), we develop a theory for Cauchy type operators on Lipschitz submanifolds of co dimension one (focused on boundedness properties and jump relations) and solve the $Lp$-Dirichlet problem, with $p$ close to $2$, for general second-order strongly elliptic systems. The solution is represented in the form of layer potentials and optimal non tangential maximal function estimates are established.This analysis is carried out under smoothness assumptions (for the coefficients of the operator, metric tensor and the underlying domain) which are in the nature of best possible. In the second part of the monograph, ss5-13, we further specialize this discussion to the case of Hodge Laplacian $\Delta: =-d\delta-\delta d$. This time, the goal is to identify all (pairs of) natural boundary conditions of Neumann type. Owing to the structural richness of the higher degree case we are considering, the theory developed here encompasses in a unitary fashion many basic PDE's of mathematical physics. Its scope extends to also cover Maxwell's equations, dealt with separately in s14. The main tools are those of PDE's and harmonic analysis, occasionally supplemented with some basic facts from algebraic topology and differential geometry.