Separation of Flow

Separation of Flow

Author: Paul K. Chang

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 800

ISBN-13: 1483181286

DOWNLOAD EBOOK

Interdisciplinary and Advanced Topics in Science and Engineering, Volume 3: Separation of Flow presents the problem of the separation of fluid flow. This book provides information covering the fields of basic physical processes, analyses, and experiments concerning flow separation. Organized into 12 chapters, this volume begins with an overview of the flow separation on the body surface as discusses in various classical examples. This text then examines the analytical and experimental results of the laminar boundary layer of steady, two-dimensional flows in the subsonic speed range. Other chapters consider the study of flow separation on the two-dimensional body, flow separation on three-dimensional body shape and particularly on bodies of revolution. This book discusses as well the analytical solutions of the unsteady flow separation. The final chapter deals with the purpose of separation flow control to raise efficiency or to enhance the performance of vehicles and fluid machineries involving various engineering applications. This book is a valuable resource for engineers.


Flow Separation Control for Cylinder Flow and Cascade Flow Using Vortex Generator Jets

Flow Separation Control for Cylinder Flow and Cascade Flow Using Vortex Generator Jets

Author:

Publisher:

Published: 2006

Total Pages: 119

ISBN-13:

DOWNLOAD EBOOK

Many attempts have been made by researchers, worldwide, to comprehend the physics of separated flows. Study of flow separation is vital as it is encountered in many engineering applications, and is generally detrimental. One such example is flow through a low pressure turbine (LPT) cascade, at relatively low-Re values, where flow separates on the suction surface of the LPT blade, and adversely affects the efficiency of the aircraft engine. Contemporary research is focused on understanding the physics of the separated flow, and identifying control strategies to delay or, if possible at all, prevent the flow separation phenomenon. The main objective of the present research is to study a model separated flow, and identify a control strategy, which can subsequently be applied to manage the flow in the LPT cascade. To achieve this, a model problem of flow past a circular cylinder is considered, as the geometry for this flow is simple and facilitates a focus on the flow itself. Despite of its simple geometry, the flow past a circular cylinder exhibits a variety of complex flow features which make this a challenging problem to solve. As a validation study, the flow for Re = 3,900 is simulated, and the results obtained are compared with the numerical and experimental data available in the literature. For the flow control study, a baseline solution for flow past a circular cylinder at Re = 13,400 is obtained as a first step towards implementation of flow separation control for preventing or delaying the flow separation. The Re value of 13,400 ensures laminar separation and serves to approximate the flow conditions prevailing in a LPT cascade. Later, flow control is incorporated by employing vortex generator jets (VGJs) on the upper surface of the cylinder at about 750 from the stagnation point. The jets are issued into the flow with a blowing ratio of 2.0 and are pitched and skewed by 300 and 700, respectively. A non-dimensional pulsation frequency F+ of 1.0 is used, along with 50% duty cycle. With this understanding, VGJs are then incorporated for the LPT cascade flow. VGJs are placed in a range of 63.5% to 67% Cax. All the jet parameters, i.e., blowing ratio, pitch angle, skew angle and duty cycle ratio, are kept the same as for the cylinder case, while the F+ value of 2.33 is employed for the LPT cascade problem. The three-dimensional, unsteady, full Navier-Stokes equations are solved to obtain accurate prediction of unsteady separated flows governed by the Navier-Stokes (N-S) equations. A fourth-order accurate, compact-difference scheme is used for spatial discretization, with sixth-order filtering to minimize the oscillations in the flow solution. For the cylinder, a multi-block structured grid generated using the grid generation software, GRIDGEN, is used for the present numerical analysis. The grid contains approximately 3.9M grid points, and approximately 70% of the total grid points are concentrated in the wake region to capture the small scales that are expected to exist in this region. A MPI-based higher-order, Chimera version of the FDL3DI flow solver developed by the Air Force Research Laboratory at Wright Patterson Air Force base is used for the numerical computations. PEGSUS a NASA Ames research code is used for storing the connectivity data at the block interfaces. The baseline case for the cylinder flow at Re = 13,400 displays a wide range of vortical structures in the wake region. The separating shear layers are subject to spanwise instability which leads to the formation of an unsteady and three-dimensional wake, with the characteristic features of typical turbulent flow. It is observed that after the jets are being turned on, the pressure on the surface of the cylinder redistributes in a way so as to reduce the pressure drag significantly. The total pressure loss coefficient and momentum thickness are calculated in the wake at x/D = 3.0 and x/D = 5.0, and are found to reduce by 10% and 30%, respectively. The flow control simulation for the LPT cascade flow reveals 27% reduction in total pressure loss coefficient, along with the total elimination of separation upon application of VGJs.


IUTAM Symposium on Unsteady Separated Flows and their Control

IUTAM Symposium on Unsteady Separated Flows and their Control

Author: Marianna Braza

Publisher: Springer Science & Business Media

Published: 2009-09-29

Total Pages: 588

ISBN-13: 1402098987

DOWNLOAD EBOOK

This Volume is the Proceedings of the IUTAM Symposium on Unsteady Separated Flows and Their Control held in Corfu, Greece, 18–22 June 2007. This was the second IUTAM Symposium on this subject, following the symposium in Toulouse, in April 2002. The Symposium consisted of single plenary sessions with invited lectures, - lected oral presentations, discussions on special topics and posters. The complete set of papers was provided to all participants at the meeting. The thematic sessions of this Symposium are presented in the following: Experimental techniques for the unsteady ow separation Theoretical aspects and analytical approaches of ow separation Instability and transition Compressibility effects related to unsteady separation Statistical and hybrid turbulence modelling for unsteady separated ows Direct and Large-Eddy Simulation of unsteady separated ows Theoretical/industrial aspects of unsteady separated ow control This IUTAM Symposium concerned an important domain of Theoretical and Applied Mechanics nowadays. It focused on the problem of ow separation and of its control. It achieved a uni ed approach regrouping the knowledge provided from theoretical, experimental, numerical simulation and modelling aspects for unsteady separated ows (incompressible and compressible regimes) and included ef cient control devices to achieve attenuation or suppression of separation. The subject - eas covered important themes in the domain of fundamental research as well as in the domain of applications.


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports

Author:

Publisher:

Published: 1995

Total Pages: 456

ISBN-13:

DOWNLOAD EBOOK

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.


Simulation of Flow Through Low-pressure Linear Turbine Cascade, Using Multi-block Structured Grid

Simulation of Flow Through Low-pressure Linear Turbine Cascade, Using Multi-block Structured Grid

Author:

Publisher:

Published: 2003

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The Reynolds number for the flow through LPT at cruise conditions is much lower than that at the take-off conditions. This low-Re flow has a great tendency to undergo separation on the suction surface of the turbine blade when an adverse pressure gradient is encountered. This prevailing flow separation is detrimental to the performance of the LPT. Hence, low-pressure turbine (LPT) stage in aircraft engines undergo significant losses during cruise conditions. Therefore, accurate prediction of flow separation is crucial for an effective design of LPT blade, and is achieved in the present work using a high-order accurate numerical solution procedure. The accurate prediction of flow separation is necessary for implementing flow control techniques, passive or active, to possibly delay or prevent the occurrence of flow separation in the low-pressure turbine stage in an aircraft engine. A multi-block, periodic, structured grid of multiple topologies generated by the grid generation software, GRIDPRO, is used for the present numerical analysis. The three-dimensional, unsteady, full Navier-Stokes equations are solved to analyze the flow. A MPI-based higher-order, parallel, chimera Large-Eddy Simulation (LES), version of the FDL3DI flow solver, developed by the Air Force Research Laboratory at Wright Patterson Air Force Base, is extended for the present turbo-machinery application. A sixth-order accurate compact-difference scheme is usual for the spatial discretization, coupled with tenth-order filtering to minimize the numerical oscillations in the flow solution and maintain numerical stability, along with second-order accurate temporal discretization. Also examined is the effect of grid density and the location of the upstream inflow boundary ... Finally, the baseline simulation study of flow over a circular cylinder at ReD = 13,400 is performed as a starting step for the future study of implementation of flow control techniques for preventing or delaying the flow separation.