Weight Distributions and Constructions of Low-density Parity-check Codes

Weight Distributions and Constructions of Low-density Parity-check Codes

Author: Chung-Li Wang

Publisher:

Published: 2010

Total Pages:

ISBN-13: 9781124223643

DOWNLOAD EBOOK

Low-density parity-check (LDPC) codes are currently the most promising coding technique to achieve the Shannon capacities for a wide range of channels. These codes were first discovered by Gallager in 1962 and then rediscovered in late 1990's. Ever since their rediscovery, a great deal of research effort has been expended in design, construction, encoding, decoding, performance analysis, generalizations, and applications of LDPC codes. This research is set up to investigate two major aspects of LDPC codes: weight distributions and code constructions. The research focus of the first part is to analyze the asymptotic weight distributions of various ensembles. Analysis shows that for generalized LDPC (G-LDPC) and doubly generalized LDPC (DG-LDPC) code ensembles with some conditions, the average minimum distance grows linearly with the code length. This implies that both ensembles contain good codes. The effect of changing the component codes of the ensemble on the minimum distance is clarified. The computation of asymptotic weight and stopping set enumerators is improved. Furthermore, the average weight distribution of a multi-edge type code ensemble is investigated to obtain its upper and lower bounds. Based on them, the growth rate of the number of codewords is defined. For the growth rate of codewords with small linear, logarithmic, and constant weights, the approximations are given with two critical coefficients. It is shown that for infinite code length, the properties of the weight distribution are determined by its asymptotic growth rate. The second part of the research emphasizes specific designs and constructions of LDPC codes that not only perform well but can also be efficiently encoded. One such construction is the serial concatenation of an LDPC outer code and an accumulator with an interleaver. Such construction gives a code called an LDPCA code. The study shows that well designed LDPCA codes perform just as well as the regular LDPC codes. It also shows that the asymptotic minimum distance of regular LDPCA codes grows linearly with the code length.


Generalized Low-Density Parity-Check Codes

Generalized Low-Density Parity-Check Codes

Author: Sherif Elsanadily

Publisher:

Published: 2020

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Scientists have competed to find codes that can be decoded with optimal decoding algorithms. Generalized LDPC codes were found to compare well with such codes. LDPC codes are well treated with both types of decoding; HDD and SDD. On the other hand GLDPC codes iterative decoding, on both AWGN and BSC channels, was not sufficiently investigated in the literature. This chapter first describes its construction then discusses its iterative decoding algorithms on both channels so far. The SISO decoders, of GLDPC component codes, show excellent error performance with moderate and high code rate. However, the complexities of such decoding algorithms are very high. When the HDD BF algorithm presented to LDPC for its simplicity and speed, it was far from the BSC capacity. Therefore involving LDPC codes in optical systems using such algorithms is a wrong choice. GLDPC codes can be introduced as a good alternative of LDPC codes as their performance under BF algorithm can be improved and they would then be a competitive choice for optical communications. This chapter will discuss the iterative HDD algorithms that improve decoding error performance of GLDPC codes. SDD algorithms that maintain the performance but lowering decoding simplicity are also described.


Channel Codes

Channel Codes

Author: William Ryan

Publisher: Cambridge University Press

Published: 2009-09-17

Total Pages: 709

ISBN-13: 1139483013

DOWNLOAD EBOOK

Channel coding lies at the heart of digital communication and data storage, and this detailed introduction describes the core theory as well as decoding algorithms, implementation details, and performance analyses. In this book, Professors Ryan and Lin provide clear information on modern channel codes, including turbo and low-density parity-check (LDPC) codes. They also present detailed coverage of BCH codes, Reed-Solomon codes, convolutional codes, finite geometry codes, and product codes, providing a one-stop resource for both classical and modern coding techniques. Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then extend to advanced topics such as code ensemble performance analyses and algebraic code design. 250 varied and stimulating end-of-chapter problems are also included to test and enhance learning, making this an essential resource for students and practitioners alike.


Low Density Parity Check Codes Based on Finite Geometries

Low Density Parity Check Codes Based on Finite Geometries

Author: National Aeronautics and Space Adm Nasa

Publisher:

Published: 2018-09-15

Total Pages: 36

ISBN-13: 9781723736247

DOWNLOAD EBOOK

Low density parity check (LDPC) codes with iterative decoding based on belief propagation achieve astonishing error performance close to Shannon limit. No algebraic or geometric method for constructing these codes has been reported and they are largely generated by computer search. As a result, encoding of long LDPC codes is in general very complex. This paper presents two classes of high rate LDPC codes whose constructions are based on finite Euclidean and projective geometries, respectively. These classes of codes a.re cyclic and have good constraint parameters and minimum distances. Cyclic structure adows the use of linear feedback shift registers for encoding. These finite geometry LDPC codes achieve very good error performance with either soft-decision iterative decoding based on belief propagation or Gallager's hard-decision bit flipping algorithm. These codes can be punctured or extended to obtain other good LDPC codes. A generalization of these codes is also presented.Kou, Yu and Lin, Shu and Fossorier, MarcGoddard Space Flight CenterEUCLIDEAN GEOMETRY; ALGORITHMS; DECODING; PARITY; ALGEBRA; INFORMATION THEORY; PROJECTIVE GEOMETRY; TWO DIMENSIONAL MODELS; COMPUTERIZED SIMULATION; ERRORS; BLOCK DIAGRAMS...


A Study of Low Density Parity-Check Codes Using Systematic Repeat-Accumulate Codes

A Study of Low Density Parity-Check Codes Using Systematic Repeat-Accumulate Codes

Author:

Publisher:

Published: 2015

Total Pages: 82

ISBN-13:

DOWNLOAD EBOOK

Low Density Parity-Check, or LDPC, codes have been a popular error correction choice in the recent years. Its use of soft-decision decoding through a message-passing algorithm and its channel-capacity approaching performance has made LDPC codes a strong alternative to that of Turbo codes. However, its disadvantages, such as encoding complexity, discourages designers from implementing these codes. This thesis will present a type of error correction code which can be considered as a subset of LDPC codes. These codes are called Repeat-Accumulate codes and are named such because of their encoder structure. These codes is seen as a type of LDPC codes that has a simple encoding method similar to Turbo codes. What makes these codes special is that they can have a simple encoding process and work well with a soft-decision decoder. At the same time, RA codes have been proven to be codes that will work well at short to medium lengths if they are systematic. Therefore, this thesis will argue that LDPC codes can avoid some of its encoding disadvantage by becoming LDPC codes with systematic RA codes. This thesis will also show in detail how RA codes are good LDPC codes by comparing its bit error performance against other LDPC simulation results tested at short to medium code lengths and with different LDPC parity-check matrix constructions. With an RA parity-check matrix describing our LDPC code, we will see how changing the interleaver structure from a random construction to that of a structured can lead to improved performance. Therefore, this thesis will experiment using three different types of interleavers which still maintain the simplicity of encoding complexity of the encoder but at the same time show potential improvement of bit error performance compared to what has been previously seen with regular LDPC codes.