Studies on Porous Monolithic Materials Prepared via Sol–Gel Processes

Studies on Porous Monolithic Materials Prepared via Sol–Gel Processes

Author: George Hasegawa

Publisher: Springer Science & Business Media

Published: 2012-10-03

Total Pages: 214

ISBN-13: 4431541985

DOWNLOAD EBOOK

This thesis focuses on porous monolithic materials that are not in the forms of particles, fibers, or films. In particular, the synthetic strategy of porous monolithic materials via the sol–gel method accompanied by phase separation, which is characterized as the non-templating method for tailoring well-defined macropores, is described from the basics to actual synthesis. Porous materials are attracting more and more attention in various fields such as electronics, energy storage, catalysis, sensing, adsorbents, biomedical science, and separation science. To date, many efforts have been made to synthesize porous materials in various chemical compositions—organics, inorganics including metals, glasses and ceramics, and organic-inorganic hybrids. Also demonstrated in this thesis are the potential applications of synthesized porous monolithic materials to separation media as well as to electrodes for electric double-layer capacitors (EDLCs) and Li-ion batteries (LIBs). This work is ideal for graduate students in materials science and is also useful to engineers or scientists seeking basic knowledge of porous monolithic materials.


Studies on Porous Monolithic Materials Prepared via Sol–Gel Processes

Studies on Porous Monolithic Materials Prepared via Sol–Gel Processes

Author: George Hasegawa

Publisher: Springer Science & Business Media

Published: 2012-10-04

Total Pages: 214

ISBN-13: 4431541977

DOWNLOAD EBOOK

This thesis focuses on porous monolithic materials that are not in the forms of particles, fibers, or films. In particular, the synthetic strategy of porous monolithic materials via the sol–gel method accompanied by phase separation, which is characterized as the non-templating method for tailoring well-defined macropores, is described from the basics to actual synthesis. Porous materials are attracting more and more attention in various fields such as electronics, energy storage, catalysis, sensing, adsorbents, biomedical science, and separation science. To date, many efforts have been made to synthesize porous materials in various chemical compositions—organics, inorganics including metals, glasses and ceramics, and organic-inorganic hybrids. Also demonstrated in this thesis are the potential applications of synthesized porous monolithic materials to separation media as well as to electrodes for electric double-layer capacitors (EDLCs) and Li-ion batteries (LIBs). This work is ideal for graduate students in materials science and is also useful to engineers or scientists seeking basic knowledge of porous monolithic materials.


Handbook of Sol-Gel Science and Technology

Handbook of Sol-Gel Science and Technology

Author: Lisa Klein

Publisher: Springer Nature

Published: 2018-05-31

Total Pages: 3755

ISBN-13: 3319321013

DOWNLOAD EBOOK

This completely updated and expanded second edition stands as a comprehensive knowledgebase on both the fundamentals and applications of this important materials processing method. The diverse, international team of contributing authors of this reference clarify in extensive detail properties and applications of sol-gel science and technology as it pertains to the production of substances, active and non-active, including optical, electronic, chemical, sensor, bio- and structural materials. Essential to a wide range of manufacturing industries, the compilation divides into the three complementary sections: Sol-Gel Processing, devoted to general aspects of processing and recently developed materials such as organic-inorganic hybrids, photonic crystals, ferroelectric coatings, and photocatalysts; Characterization of Sol-Gel Materials and Products, presenting contributions that highlight the notion that useful materials are only produced when characterization is tied to processing, such as determination of structure by NMR, in-situ characterization of the sol-gel reaction process, determination of microstructure of oxide gels, characterization of porous structure of gels by the surface measurements, and characterization of organic-inorganic hybrid; and Applications of Sol-Gel Technology, covering applications such as the sol-gel method used in processing of bulk silica glasses, bulk porous gels prepared by sol-gel method, application of sol-gel method to fabrication of glass and ceramic fibers, reflective and antireflective coating films, application of sol-gel method to formation of photocatalytic coating films, and application of sol-gel method to bioactive coating films. The comprehensive scope and integrated treatment of topics make this reference volume ideal for R&D scientists and engineers across a wide range of disciplines and professional interests.


Hierarchically Structured Porous Materials

Hierarchically Structured Porous Materials

Author: B.-L. Su

Publisher: John Wiley & Sons

Published: 2012-04-06

Total Pages: 676

ISBN-13: 3527639594

DOWNLOAD EBOOK

This first book devoted to this hot field of science covers materials with bimodal, trimodal and multimodal pore size, with an emphasis on the successful design, synthesis and characterization of all kinds of hierarchically porous materials using different synthesis strategies. It details formation mechanisms related to different synthesis strategies while also introducing natural phenomena of hierarchy and perspectives of hierarchical science in polymers, physics, engineering, biology and life science. Examples are given to illustrate how to design an optimal hierarchically porous material for specific applications ranging from catalysis and separation to biomedicine, photonics, and energy conversion and storage. With individual chapters written by leading experts, this is the authoritative treatment, serving as an essential reference for researchers and beginners alike.


Nanostructured Materials Preparation via Condensation Ways

Nanostructured Materials Preparation via Condensation Ways

Author: Anatolii D. Pomogailo

Publisher: Springer

Published: 2014-08-26

Total Pages: 475

ISBN-13: 9048125677

DOWNLOAD EBOOK

The book is devoted to novel nanostructured materials and nanotechnology. A comprehensive analysis of the condensing methods of preparation of novel nanostructured materials is given. The methodology of power-consuming preparation of nanostructured materials is discussed, including thermolysis, photo- and radiolytic, electrochemical and mechanochemical methods. The peculiarities of chemical transformations in organic and inorganic matrices are compared. Special attention is given to kinetics and mechanism of the formation of nanocomposites. The structure and properties of such nanostructured materials are analysed.


Sol-Gel Materials

Sol-Gel Materials

Author: John D. Wright

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 136

ISBN-13: 1482283166

DOWNLOAD EBOOK

Sol-Gel processing methods, first used historically for decorative and constructional materials, were extensively developed in the last century for applications such as glasses, ceramics, catalysts, coatings, composites and fibres. Today they are reaching their full potential, enabling the preparation of new generations of advanced materials not easily accessible by other methods yet using mild, low-energy conditions. The topic is therefore increasingly included in advanced undergraduate, MSc and PhD programmes in the areas of chemistry, physics and materials science. This concise introductory text, written at the advanced undergraduate/first-year postgraduate level, is also suitable as an introduction to the development, mechanisms, chemistry, characterisation methods and applications of the technique. It provides readers with an extensive yet concise grounding in the theory of each area of the subject and details the real and potential applications and the future prospects of sol-gel chemistry.


Characterisation of Porous Solids V

Characterisation of Porous Solids V

Author: G. Kreysa

Publisher: Elsevier

Published: 2000-04-11

Total Pages: 699

ISBN-13: 0080528899

DOWNLOAD EBOOK

The Fifth International Symposium on the Characterisation of Porous Solids (COPS-V) was held at Heidelberg, Germany, from May 30 to June 2, 1999. About 220 participants from 25 countries enjoyed a very successful meeting with 32 lectures and 155 poster presentations. The Symposium started with a highly stimulating lecture by Sir John Meurig Thomas, Cambridge, highlighting the recent developments in engineering of new catalysts. The following two full sessions were devoted to theory, modelling and simulation which provide the basis for the interpretation of pore structural data of adsorbents and finely dispersed solids. Sessions 2 and 3 focused on the advances in the synthesis and characterisation of highly ordered inorganic adsorbents and carbons. Sessions 4 and 5 addressed important questions with respect to the characterisation of porous solids by sorption measurement and other related techniques. The intensive three-day programme provided a stimulating forum for the exchange of novel research findings, concepts, techniques and materials which are collected in this volume.


The Sol-Gel Handbook

The Sol-Gel Handbook

Author: David Levy

Publisher: John Wiley & Sons

Published: 2015-08-28

Total Pages: 1616

ISBN-13: 352767084X

DOWNLOAD EBOOK

This comprehensive three-volume handbook brings together a review of the current state together with the latest developments in sol-gel technology to put forward new ideas. The first volume, dedicated to synthesis and shaping, gives an in-depth overview of the wet-chemical processes that constitute the core of the sol-gel method and presents the various pathways for the successful synthesis of inorganic and hybrid organic-inorganic materials, bio- and bio-inspired materials, powders, particles and fibers as well as sol-gel derived thin films, coatings and surfaces. The second volume deals with the mechanical, optical, electrical and magnetic properties of sol-gel derived materials and the methods for their characterization such as diffraction methods and nuclear magnetic resonance, infrared and Raman spectroscopies. The third volume concentrates on the various applications in the fields of membrane science, catalysis, energy research, biomaterials science, biomedicine, photonics and electronics.


Sol-Gel Silica

Sol-Gel Silica

Author: Larry L. Hench

Publisher: William Andrew

Published: 1998-12-31

Total Pages: 179

ISBN-13: 0815519087

DOWNLOAD EBOOK

A unique perspective of twentieth century research and development in materials science. It summarizes the fifteen years of sol-gel silica processing research leading to the commercial development of bioactive gel-glasses for medical applications. It demonstrates the combined use of quantum mechanical molecular modeling and spectroscopy to solve environmental stability problems. A final chapter addresses the topic of Technology Transfer - how to transfer technology from the laboratory to a profitable commercial enterprise using examples from various chapters in the book.


Comprehensive Sampling and Sample Preparation

Comprehensive Sampling and Sample Preparation

Author: Josep M. Bayona

Publisher: Academic Press

Published: 2012-12-31

Total Pages: 2998

ISBN-13: 0123813743

DOWNLOAD EBOOK

Comprehensive Sampling and Sample Preparation is a complete treatment of the theory and methodology of sampling in all physical phases and the theory of sample preparation for all major extraction techniques. It is the perfect starting point for researchers and students to design and implement their experiments and support those experiments with quality-reviewed background information. In its four volumes, fundamentals of sampling and sample preparation are reinforced through broad and detailed sections dealing with Biological and Medical, Environmental and Forensic, and Food and Beverage applications. The contributions are organized to reflect the way in which analytical chemists approach a problem. It is intended for a broad audience of analytical chemists, both educators and practitioners of the art and can assist in the preparation of courses as well in the selection of sampling and sample preparation techniques to address the challenges at hand. Above all, it is designed to be helpful in learning more about these topics, as well as to encourage an interest in sampling and sample preparation by outlining the present practice of the technology and by indicating research opportunities. Sampling and Sample preparation is a large and well-defined field in Analytical Chemistry, relevant for many application areas such as medicine, environmental science, biochemistry, pharmacology, geology, and food science. This work covers all these aspects and will be extremely useful to researchers and students, who can use it as a starting point to design and implement their experiments and for quality-reviewed background information There are limited resources that Educators can use to effectively teach the fundamental aspects of modern sample preparation technology. Comprehensive Sampling and Sample Preparation addresses this need, but focuses on the common principles of new developments in extraction technologies rather than the differences between techniques thus facilitating a more thorough understanding Provides a complete overview of the field. Not only will help to save time, it will also help to make correct assessments and avoid costly mistakes in sampling in the process Sample and sample preparation are integral parts of the analytical process but are often less considered and sometimes even completely disregarded in the available literature. To fill this gap, leading scientists have contributed 130 chapters, organized in 4 volumes, covering all modern aspects of sampling and liquid, solid phase and membrane extractions, as well as the challenges associated with different types of matrices in relevant application areas