Ultrarelativistic Heavy-Ion Collisions

Ultrarelativistic Heavy-Ion Collisions

Author: Ramona Vogt

Publisher: Elsevier

Published: 2007-06-04

Total Pages: 489

ISBN-13: 0080525369

DOWNLOAD EBOOK

This book is designed for advanced undergraduate and graduate students in high energy heavy-ion physics. It is relevant for students who will work on topics being explored at RHIC and the LHC. In the first part, the basic principles of these studies are covered including kinematics, cross sections (including the quark model and parton distribution functions), the geometry of nuclear collisions, thermodynamics, hydrodynamics and relevant aspects of lattice gauge theory at finite temperature. The second part covers some more specific probes of heavy-ion collisions at these energies: high mass thermal dileptons, quarkonium and hadronization. The second part also serves as extended examples of concepts learned in the previous part. Both parts contain examples in the text as well as exercises at the end of each chapter.- Designed for students and newcomers to the field- Focuses on hard probes and QCD- Covers all aspects of high energy heavy-ion physics- Includes worked example problems and exercises


Dark Matter in Astro- and Particle Physics

Dark Matter in Astro- and Particle Physics

Author: H.V. Klapdor-Kleingrothaus

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 747

ISBN-13: 364256643X

DOWNLOAD EBOOK

Dark matter in the Universe has become one of the most exciting and central fields of astrophysics, particle physics and cosmology. The lectures and talks in this book emphasize the experimental and theoretical status and perspectives of the ongoing search for dark matter, and the future potential of the field into the next millennium, stressing in particular the interplay between astro- and particle physics.


Dualities and Representations of Lie Superalgebras

Dualities and Representations of Lie Superalgebras

Author: Shun-Jen Cheng

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 323

ISBN-13: 0821891189

DOWNLOAD EBOOK

This book gives a systematic account of the structure and representation theory of finite-dimensional complex Lie superalgebras of classical type and serves as a good introduction to representation theory of Lie superalgebras. Several folklore results are rigorously proved (and occasionally corrected in detail), sometimes with new proofs. Three important dualities are presented in the book, with the unifying theme of determining irreducible characters of Lie superalgebras. In order of increasing sophistication, they are Schur duality, Howe duality, and super duality. The combinatorics of symmetric functions is developed as needed in connections to Harish-Chandra homomorphism as well as irreducible characters for Lie superalgebras. Schur-Sergeev duality for the queer Lie superalgebra is presented from scratch with complete detail. Howe duality for Lie superalgebras is presented in book form for the first time. Super duality is a new approach developed in the past few years toward understanding the Bernstein-Gelfand-Gelfand category of modules for classical Lie superalgebras. Super duality relates the representation theory of classical Lie superalgebras directly to the representation theory of classical Lie algebras and thus gives a solution to the irreducible character problem of Lie superalgebras via the Kazhdan-Lusztig polynomials of classical Lie algebras.


Beam Acceleration In Crystals And Nanostructures - Proceedings Of The Workshop

Beam Acceleration In Crystals And Nanostructures - Proceedings Of The Workshop

Author: Gerard Mourou

Publisher:

Published: 2020

Total Pages: 269

ISBN-13: 9811217130

DOWNLOAD EBOOK

"Recent advancements in generation of intense X-ray laser ultrashort pulses open opportunities for particle acceleration in solid-state plasmas. Wakefield acceleration in crystals or carbon nanotubes shows promise of unmatched ultra-high accelerating gradients and possibility to shape the future of high energy physics colliders. This book summarizes the discussions of the "Workshop on Beam Acceleration in Crystals and Nanostructures" (Fermilab, June 24-25, 2019), presents next steps in theory and modeling and outlines major physics and technology challenges toward proof-of-principle demonstration experiments"--Publisher's website.


Searches for Dijet Resonances

Searches for Dijet Resonances

Author: Lydia Audrey Beresford

Publisher: Springer

Published: 2018-12-14

Total Pages: 0

ISBN-13: 9783030073657

DOWNLOAD EBOOK

This book addresses one of the most intriguing mysteries of our universe: the nature of dark matter. The results presented here mark a significant and substantial contribution to the search for new physics, in particular for new particles that couple to dark matter. The first analysis presented is a search for heavy new particles that decay into pairs of hadronic jets (dijets). This pioneering analysis explores unprecedented dijet invariant masses, reaching nearly 7 TeV, and sets constraints on several important new physics models. The two subsequent analyses focus on the difficult low dijet mass region, down to 200 GeV, and employ a novel technique to efficiently gather low-mass dijet events. The results of these analyses transcend the long-standing constraints on dark matter mediator particles set by several existing experiments.


Graphene Quantum Dots

Graphene Quantum Dots

Author: Alev Devrim Güçlü

Publisher: Springer

Published: 2014-09-11

Total Pages: 181

ISBN-13: 3662446111

DOWNLOAD EBOOK

This book reflects the current status of theoretical and experimental research of graphene based nanostructures, in particular quantum dots, at a level accessible to young researchers, graduate students, experimentalists and theorists. It presents the current state of research of graphene quantum dots, a single or few monolayer thick islands of graphene. It introduces the reader to the electronic and optical properties of graphite, intercalated graphite and graphene, including Dirac fermions, Berry's phase associated with sublattices and valley degeneracy, covers single particle properties of graphene quantum dots, electron-electron interaction, magnetic properties and optical properties of gated graphene nanostructures. The electronic, optical and magnetic properties of the graphene quantum dots as a function of size, shape, type of edge and carrier density are considered. Special attention is paid to the understanding of edges and the emergence of edge states for zigzag edges. Atomistic tight binding and effective mass approaches to single particle calculations are performed. Furthermore, the theoretical and numerical treatment of electron-electron interactions at the mean-field, HF, DFT and configuration-interaction level is described in detail.


Hot and Dense Nuclear Matter

Hot and Dense Nuclear Matter

Author: Walter Greiner

Publisher: Springer Science & Business Media

Published: 1994

Total Pages: 920

ISBN-13: 9780306448850

DOWNLOAD EBOOK

Proceedings of the NATO Advanced Study Institute on [title], held in Bodrum, Turkey, Sept.-Oct. 1993. Leading researchers present new material and new results with regard to hot and dense nuclear matter. Essentially, they investigate how matter may have been formed and what its properties were just


Elementary Particles - Accelerators and Colliders

Elementary Particles - Accelerators and Colliders

Author: Ugo Amaldi

Publisher: Springer

Published: 2013-03-27

Total Pages: 0

ISBN-13: 9783642230523

DOWNLOAD EBOOK

After a historical consideration of the types and evolution of accelerators the physics of particle beams is provided in detail. Topics dealt with comprise linear and nonlinear beam dynamics, collective phenomena in beams, and interactions of beams with the surroundings. The design and principles of synchrotrons, circular and linear colliders, and of linear accelerators are discussed next. Also technological aspects of accelerators (magnets, RF cavities, cryogenics, power supply, vacuum, beam instrumentation, injection and extraction) are reviewed, as well as accelerator operation (parameter control, beam feedback system, orbit correction, luminosity optimization). After introducing the largest accelerators and colliders of their times the application of accelerators and storage rings in industry, medicine, basic science, and energy research is discussed, including also synchrotron radiation sources and spallation sources. Finally, cosmic accelerators and an outlook for the future are given.


Medical Applications of Lasers

Medical Applications of Lasers

Author: D.R. Vij

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 381

ISBN-13: 1461509297

DOWNLOAD EBOOK

A careful review of the literature covering various aspects of applications of lasers in science and technology reveals that lasers are being applied very widely throughout the entire gamut of physical medicine. After surveying the current developments taking place in the field of medical applications of lasers, it was considered appropriate to bring together these efforts of international research scientists and experts into one volume. It is with this aim that the editors have prepared this volume which brings current research and recent developments to the attention of a wide spectrum of readership associated with hospitals, medical institutions and universities world wide, including also the medical instrument industry. Both teachers and students in the medical faculties will especially find this compendium quite useful. This book is comprised of eleven chapters. All of the important medical applications of lasers are featured. The editors have made every effort that individual chapters are self-contained and written by experts. Emphasis has been placed on straight and simple presentation of the subject matter so that even the new entrants into the field will find the book of value.