Spectral Methods of Automorphic Forms

Spectral Methods of Automorphic Forms

Author: Henryk Iwaniec

Publisher: American Mathematical Society, Revista Matemática Iberoamericana (RMI), Madrid, Spain

Published: 2021-11-17

Total Pages: 220

ISBN-13: 1470466228

DOWNLOAD EBOOK

Automorphic forms are one of the central topics of analytic number theory. In fact, they sit at the confluence of analysis, algebra, geometry, and number theory. In this book, Henryk Iwaniec once again displays his penetrating insight, powerful analytic techniques, and lucid writing style. The first edition of this book was an underground classic, both as a textbook and as a respected source for results, ideas, and references. Iwaniec treats the spectral theory of automorphic forms as the study of the space of $L^2$ functions on the upper half plane modulo a discrete subgroup. Key topics include Eisenstein series, estimates of Fourier coefficients, Kloosterman sums, the Selberg trace formula and the theory of small eigenvalues. Henryk Iwaniec was awarded the 2002 Cole Prize for his fundamental contributions to number theory.


Spectral Theory of Automorphic Functions

Spectral Theory of Automorphic Functions

Author: A.B. Venkov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 189

ISBN-13: 9400918925

DOWNLOAD EBOOK

'Et moi ..., si j'avait su comment en revcnrr, One service mathematics has rendered the je n'y serais point aile.' human race. It has put common sense back. Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.


Topics in Classical Automorphic Forms

Topics in Classical Automorphic Forms

Author: Henryk Iwaniec

Publisher: American Mathematical Soc.

Published: 1997

Total Pages: 274

ISBN-13: 0821807773

DOWNLOAD EBOOK

This volume discusses various perspectives of the theory of automorphic forms drawn from the author's notes from a Rutgers University graduate course. In addition to detailed and often nonstandard treatment of familiar theoretical topics, the author also gives special attention to such subjects as theta- functions and representatives by quadratic forms. Annotation copyrighted by Book News, Inc., Portland, OR


Spectral Decomposition and Eisenstein Series

Spectral Decomposition and Eisenstein Series

Author: Colette Moeglin

Publisher: Cambridge University Press

Published: 1995-11-02

Total Pages: 382

ISBN-13: 9780521418935

DOWNLOAD EBOOK

A self-contained introduction to automorphic forms, and Eisenstein series and pseudo-series, proving some of Langlands' work at the intersection of number theory and group theory.


Modern Analysis of Automorphic Forms By Example

Modern Analysis of Automorphic Forms By Example

Author: Paul Garrett

Publisher: Cambridge University Press

Published: 2018-09-20

Total Pages: 407

ISBN-13: 1107154006

DOWNLOAD EBOOK

Volume 1 of a two-volume introduction to the analytical aspects of automorphic forms, featuring proofs of critical results with examples.


Analytic Number Theory

Analytic Number Theory

Author: Henryk Iwaniec

Publisher: American Mathematical Soc.

Published: 2021-10-14

Total Pages: 615

ISBN-13: 1470467704

DOWNLOAD EBOOK

Analytic Number Theory distinguishes itself by the variety of tools it uses to establish results. One of the primary attractions of this theory is its vast diversity of concepts and methods. The main goals of this book are to show the scope of the theory, both in classical and modern directions, and to exhibit its wealth and prospects, beautiful theorems, and powerful techniques. The book is written with graduate students in mind, and the authors nicely balance clarity, completeness, and generality. The exercises in each section serve dual purposes, some intended to improve readers' understanding of the subject and others providing additional information. Formal prerequisites for the major part of the book do not go beyond calculus, complex analysis, integration, and Fourier series and integrals. In later chapters automorphic forms become important, with much of the necessary information about them included in two survey chapters.


Scattering Theory for Automorphic Functions

Scattering Theory for Automorphic Functions

Author: Peter D. Lax

Publisher: Princeton University Press

Published: 1976

Total Pages: 316

ISBN-13: 9780691081847

DOWNLOAD EBOOK

The application by Fadeev and Pavlov of the Lax-Phillips scattering theory to the automorphic wave equation led Professors Lax and Phillips to reexamine this development within the framework of their theory. This volume sets forth the results of that work in the form of new or more straightforward treatments of the spectral theory of the Laplace-Beltrami operator over fundamental domains of finite area; the meromorphic character over the whole complex plane of the Eisenstein series; and the Selberg trace formula. CONTENTS: 1. Introduction. 2. An abstract scattering theory. 3. A modified theory for second order equations with an indefinite energy form. 4. The Laplace-Beltrami operator for the modular group. 5. The automorphic wave equation. 6. Incoming and outgoing subspaces for the automorphic wave equations. 7. The scattering matrix for the automorphic wave equation. 8. The general case. 9. The Selberg trace formula.


Equidistribution in Number Theory, An Introduction

Equidistribution in Number Theory, An Introduction

Author: Andrew Granville

Publisher: Springer Science & Business Media

Published: 2007-04-08

Total Pages: 356

ISBN-13: 1402054041

DOWNLOAD EBOOK

This set of lectures provides a structured introduction to the concept of equidistribution in number theory. This concept is of growing importance in many areas, including cryptography, zeros of L-functions, Heegner points, prime number theory, the theory of quadratic forms, and the arithmetic aspects of quantum chaos. The volume brings together leading researchers from a range of fields who reveal fascinating links between seemingly disparate areas.


Spectral Theory of the Riemann Zeta-Function

Spectral Theory of the Riemann Zeta-Function

Author: Yoichi Motohashi

Publisher: Cambridge University Press

Published: 1997-09-11

Total Pages: 246

ISBN-13: 0521445205

DOWNLOAD EBOOK

The Riemann zeta function is one of the most studied objects in mathematics, and is of fundamental importance. In this book, based on his own research, Professor Motohashi shows that the function is closely bound with automorphic forms and that many results from there can be woven with techniques and ideas from analytic number theory to yield new insights into, and views of, the zeta function itself. The story starts with an elementary but unabridged treatment of the spectral resolution of the non-Euclidean Laplacian and the trace formulas. This is achieved by the use of standard tools from analysis rather than any heavy machinery, forging a substantial aid for beginners in spectral theory as well. These ideas are then utilized to unveil an image of the zeta-function, first perceived by the author, revealing it to be the main gem of a necklace composed of all automorphic L-functions. In this book, readers will find a detailed account of one of the most fascinating stories in the development of number theory, namely the fusion of two main fields in mathematics that were previously studied separately.