Studies in Phase Space Analysis with Applications to PDEs

Studies in Phase Space Analysis with Applications to PDEs

Author: Massimo Cicognani

Publisher: Springer Science & Business Media

Published: 2013-03-12

Total Pages: 391

ISBN-13: 1461463483

DOWNLOAD EBOOK

This collection of original articles and surveys, emerging from a 2011 conference in Bertinoro, Italy, addresses recent advances in linear and nonlinear aspects of the theory of partial differential equations (PDEs). Phase space analysis methods, also known as microlocal analysis, have continued to yield striking results over the past years and are now one of the main tools of investigation of PDEs. Their role in many applications to physics, including quantum and spectral theory, is equally important. Key topics addressed in this volume include: *general theory of pseudodifferential operators *Hardy-type inequalities *linear and non-linear hyperbolic equations and systems *Schrödinger equations *water-wave equations *Euler-Poisson systems *Navier-Stokes equations *heat and parabolic equations Various levels of graduate students, along with researchers in PDEs and related fields, will find this book to be an excellent resource. Contributors T. Alazard P.I. Naumkin J.-M. Bony F. Nicola N. Burq T. Nishitani C. Cazacu T. Okaji J.-Y. Chemin M. Paicu E. Cordero A. Parmeggiani R. Danchin V. Petkov I. Gallagher M. Reissig T. Gramchev L. Robbiano N. Hayashi L. Rodino J. Huang M. Ruzhanky D. Lannes J.-C. Saut F. Linares N. Visciglia P.B. Mucha P. Zhang C. Mullaert E. Zuazua T. Narazaki C. Zuily


Harmonic Analysis in Phase Space. (AM-122), Volume 122

Harmonic Analysis in Phase Space. (AM-122), Volume 122

Author: Gerald B. Folland

Publisher: Princeton University Press

Published: 2016-03-02

Total Pages: 288

ISBN-13: 1400882427

DOWNLOAD EBOOK

This book provides the first coherent account of the area of analysis that involves the Heisenberg group, quantization, the Weyl calculus, the metaplectic representation, wave packets, and related concepts. This circle of ideas comes principally from mathematical physics, partial differential equations, and Fourier analysis, and it illuminates all these subjects. The principal features of the book are as follows: a thorough treatment of the representations of the Heisenberg group, their associated integral transforms, and the metaplectic representation; an exposition of the Weyl calculus of pseudodifferential operators, with emphasis on ideas coming from harmonic analysis and physics; a discussion of wave packet transforms and their applications; and a new development of Howe's theory of the oscillator semigroup.


Phase Space Analysis of Partial Differential Equations

Phase Space Analysis of Partial Differential Equations

Author: Antonio Bove

Publisher: Springer Science & Business Media

Published: 2007-12-28

Total Pages: 336

ISBN-13: 0817645217

DOWNLOAD EBOOK

Covers phase space analysis methods, including microlocal analysis, and their applications to physics Treats the linear and nonnlinear aspects of the theory of PDEs Original articles are self-contained with full proofs; survey articles give a quick and direct introduction to selected topics evolving at a fast pace Excellent reference and resource for grad students and researchers in PDEs and related fields


Mathematical Analysis and Applications—Plenary Lectures

Mathematical Analysis and Applications—Plenary Lectures

Author: Luigi G. Rodino

Publisher: Springer

Published: 2018-11-11

Total Pages: 212

ISBN-13: 3030008746

DOWNLOAD EBOOK

This book includes the texts of the survey lectures given by plenary speakers at the 11th International ISAAC Congress held in Växjö, Sweden, on 14-18 August, 2017. It is the purpose of ISAAC to promote analysis, its applications, and its interaction with computation. Analysis is understood here in the broad sense of the word, including differential equations, integral equations, functional analysis, and function theory. With this objective, ISAAC organizes international Congresses for the presentation and discussion of research on analysis. The plenary lectures in the present volume, authored by eminent specialists, are devoted to some exciting recent developments, topics including: local solvability for subprincipal type operators; fractional-order Laplacians; degenerate complex vector fields in the plane; lower bounds for pseudo-differential operators; a survey on Morrey spaces; localization operators in Signal Theory and Quantum Mechanics. Thanks to the accessible style used, readers only need a basic command of Calculus. This book will appeal to scientists, teachers, and graduate students in Mathematics, in particular Mathematical Analysis, Probability and Statistics, Numerical Analysis and Mathematical Physics.


New Tools for Nonlinear PDEs and Application

New Tools for Nonlinear PDEs and Application

Author: Marcello D'Abbicco

Publisher: Springer

Published: 2019-05-07

Total Pages: 392

ISBN-13: 3030109372

DOWNLOAD EBOOK

This book features a collection of papers devoted to recent results in nonlinear partial differential equations and applications. It presents an excellent source of information on the state-of-the-art, new methods, and trends in this topic and related areas. Most of the contributors presented their work during the sessions "Recent progress in evolution equations" and "Nonlinear PDEs" at the 12th ISAAC congress held in 2017 in Växjö, Sweden. Even if inspired by this event, this book is not merely a collection of proceedings, but a stand-alone project gathering original contributions from active researchers on the latest trends in nonlinear evolution PDEs.


Nonlinear PDEs

Nonlinear PDEs

Author: Guido Schneider

Publisher: American Mathematical Soc.

Published: 2017-10-26

Total Pages: 593

ISBN-13: 1470436132

DOWNLOAD EBOOK

This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced models. For many models, a mathematically rigorous justification by approximation results is given. The parts of the book are kept as self-contained as possible. The book is suitable for self-study, and there are various possibilities to build one- or two-semester courses from the book.


Recent Trends in Operator Theory and Partial Differential Equations

Recent Trends in Operator Theory and Partial Differential Equations

Author: Vladimir Maz'ya

Publisher: Birkhäuser

Published: 2017-02-23

Total Pages: 313

ISBN-13: 3319470795

DOWNLOAD EBOOK

This volume is dedicated to the eminent Georgian mathematician Roland Duduchava on the occasion of his 70th birthday. It presents recent results on Toeplitz, Wiener-Hopf, and pseudodifferential operators, boundary value problems, operator theory, approximation theory, and reflects the broad spectrum of Roland Duduchava's research. The book is addressed to a wide audience of pure and applied mathematicians.


Methods for Partial Differential Equations

Methods for Partial Differential Equations

Author: Marcelo R. Ebert

Publisher: Birkhäuser

Published: 2018-02-23

Total Pages: 473

ISBN-13: 3319664565

DOWNLOAD EBOOK

This book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the “research project for beginners” proposed at the end of the book. It is a valuable resource for advanced graduates and undergraduate students who are interested in specializing in this area. The book is organized in five parts: In Part 1 the authors review the basics and the mathematical prerequisites, presenting two of the most fundamental results in the theory of partial differential equations: the Cauchy-Kovalevskaja theorem and Holmgren's uniqueness theorem in its classical and abstract form. It also introduces the method of characteristics in detail and applies this method to the study of Burger's equation. Part 2 focuses on qualitative properties of solutions to basic partial differential equations, explaining the usual properties of solutions to elliptic, parabolic and hyperbolic equations for the archetypes Laplace equation, heat equation and wave equation as well as the different features of each theory. It also discusses the notion of energy of solutions, a highly effective tool for the treatment of non-stationary or evolution models and shows how to define energies for different models. Part 3 demonstrates how phase space analysis and interpolation techniques are used to prove decay estimates for solutions on and away from the conjugate line. It also examines how terms of lower order (mass or dissipation) or additional regularity of the data may influence expected results. Part 4 addresses semilinear models with power type non-linearity of source and absorbing type in order to determine critical exponents: two well-known critical exponents, the Fujita exponent and the Strauss exponent come into play. Depending on concrete models these critical exponents divide the range of admissible powers in classes which make it possible to prove quite different qualitative properties of solutions, for example, the stability of the zero solution or blow-up behavior of local (in time) solutions. The last part features selected research projects and general background material.


Microlocal Analysis, Sharp Spectral Asymptotics and Applications III

Microlocal Analysis, Sharp Spectral Asymptotics and Applications III

Author: Victor Ivrii

Publisher: Springer Nature

Published: 2019-09-12

Total Pages: 750

ISBN-13: 3030305376

DOWNLOAD EBOOK

The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in “small” domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the methods developed in Volumes I and II are applied to the Schrödinger and Dirac operators in smooth settings in dimensions 2 and 3.