Forest Products Biotechnology

Forest Products Biotechnology

Author: Alan Bruce

Publisher: CRC Press

Published: 2002-09-10

Total Pages: 337

ISBN-13: 0203482972

DOWNLOAD EBOOK

Industries are developing radical, new biotechnology processes to expand and develop their range of products that originate from the world's forests. As a result of the growing understanding of the process involved, biotechnology is also helping reduce any adverse impact on the environment.; This book presents a review of specialist research directed towards efficient and environmentally sensitive use of forests. An introductory chapter explaining the structure and anatomy of wood is followed by a chapter-by-chapter review of the most current developments on individual topics associated with a wide range of forest products such as timber, trees, pulp and paper, drugs and valuable chemicals. In addition, chapters focus on the ways of resolving some of the environmental problems faced by these industries.


Population Genetics in Forestry

Population Genetics in Forestry

Author: Hans-Rolf Gregorius

Publisher: Springer Science & Business Media

Published: 2013-03-13

Total Pages: 296

ISBN-13: 3642481256

DOWNLOAD EBOOK

When we consider the main object of forestry, the tree, it immediately becomes clear why experimental population geneticists have been so hesitant in making this object a primary concern of their research. Trees are very long-living organisms with generation intervals frequently exceeding those of their investigators by multiples. They virtually exclude, therefore, application of the classical methods of population genetics since these are based on observing genetic structures over generations. This situation, where the limits set to observation are so severe, particularly requires close cooperation between theory and experiment. It also requires careful consideration of results obtained for organisms other than trees, in order to gain additional insights by comparing the results for trees with those for other organisms. Yet, the greatest challenge to population and ecological genetics probably originates from the fact that forests are very likely to be the most complex ecosystems of all, even in some cases where they are subject to intense management. This complexity, which equally comprises biotic and abiotic factors varying both in time and space, makes extremely high demands on the adaptational capacity and thus flexibility of the carriers of such an ecosystem. Longevity combined with immobility during the vegetative phase, however, appears to contradict the obvious necessity of adaptational flexibility in forest tree populations when compared with short lived and/or mobile organisms.