Work more effectively and check solutions as you go along with the text! This Student Solutions Manual provides complete solutions to selected problems from Connally's Functions Modeling Change, 2nd Edition. These solutions will help you develop strong problem solving skills. From the Calculus Consortium based at Harvard University, Functions Modeling Change, 2nd Edition prepares readers for the study of calculus, presenting families of functions as models for change. These materials stress conceptual understanding and multiple ways of representing mathematical ideas. The focus throughout is on those topics that are essential to the study of calculus and these topics are treated in depth.
The third edition of this ground-breaking text continues the authors′ goal - a targeted introduction to precalculus that carefully balances concepts with procedures.
College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory
"The text is suitable for a typical introductory algebra course, and was developed to be used flexibly. While the breadth of topics may go beyond what an instructor would cover, the modular approach and the richness of content ensures that the book meets the needs of a variety of programs."--Page 1.
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.
Reflects the latest applied research and features state-of-the-art software for building and solving spreadsheet optimization models Thoroughly updated to reflect the latest topical and technical advances in the field, Optimization Modeling with Spreadsheets, Second Edition continues to focus on solving real-world optimization problems through the creation of mathematical models and the use of spreadsheets to represent and analyze those models. Developed and extensively classroom-tested by the author, the book features a systematic approach that equips readers with the skills to apply optimization tools effectively without the need to rely on specialized algorithms. This new edition uses the powerful software package Risk Solver Platform (RSP) for optimization, including its Evolutionary Solver, which employs many recently developed ideas for heuristic programming. The author provides expanded coverage of integer programming and discusses linear and nonlinear programming using a systematic approach that emphasizes the use of spreadsheet-based optimization tools. The Second Edition also features: Classifications for the various problem types, providing the reader with a broad framework for building and recognizing optimization models Network models that allow for a more general form of mass balance A systematic introduction to Data Envelopment Analysis (DEA) The identification of qualitative patterns in order to meaningfully interpret linear programming solutions An introduction to stochastic programming and the use of RSP to solve problems of this type Additional examples, exercises, and cases have been included throughout, allowing readers to test their comprehension of the material. In addition, a related website features Microsoft Office® Excel files to accompany the figures and data sets in the book. With its accessible and comprehensive presentation, Optimization Modeling with Spreadsheets, Second Edition is an excellent book for courses on deterministic models, optimization, and spreadsheet modeling at the upper-undergraduate and graduate levels. The book can also serve as a reference for researchers, practitioners, and consultants working in business, engineering, operations research, and management science.