Structure, Thermophysical Properties of Liquids, and Their Connection with Glass Formability

Structure, Thermophysical Properties of Liquids, and Their Connection with Glass Formability

Author: Rongrong Dai

Publisher:

Published: 2020

Total Pages: 136

ISBN-13:

DOWNLOAD EBOOK

Metallic glasses have drawn significant attention due to their unique properties, such as high strength, excellent elastic energy storage capacity, and versatile processability. However, why some liquids can easily form metallic glasses while others don't is still unclear. Since metallic glasses are formed when liquids are cooled fast enough to bypass crystallization, we hope to better understand glass formation by investigating the structural evolution and thermophysical properties of the liquids as they are cooled toward the glass transition. Multiple molecular dynamics simulations suggest a crossover temperature for the dynamics near the liquidus temperature, which corresponds to the onset of cooperative structural rearrangements and may be the beginning of the glass transition. In this dissertation, a possible structural signature of this onset of cooperativity is first identified using high-energy synchrotron X-ray scattering studies and viscosity measurements on electrostatically levitated liquids. We also address the practical question of how to predict glass formation from properties of the high temperature liquids. A method to accurately predict the glass transition temperature in metallic glasses from properties of the equilibrium liquids is proposed. It uses the viscosity and the thermal expansion coefficient for the equilibrium liquid. Using the predicted glass transition temperature and a fragility parameter developed from the liquid properties, a new prediction formula is generated, which only uses the liquid properties. While the prediction formula works for most cases, in some cases, it fails. The analysis of these anomalous cases demonstrates that the structural similarity between the liquid and crystal phases plays an important role in the glass formability. This is the first demonstration of this important controlling factor for glass formability. We also used machine learning (Lasso regression and Random Forest) to predict the glass formability and identify important predictors. The identified important predictors are in good agreement with those from the empirical rules. Finally, the evolution of the Cu46Zr54 liquid structure is investigated by elastic neutron scattering (with isotopic substitution) and synchrotron X-ray scattering studies. The experimental results show that the number of Cu-Cu and Zr-Zr atom pairs increases as the temperature decreases, while the number of Cu-Zr atom pairs decreases on cooling. This result disagrees with predictions from previous molecular dynamics studies, suggesting that the potentials used in the molecular dynamics simulations should be reassessed.


Thermophysical Properties and Structural Evolution of Supercooled Metallic Liquids

Thermophysical Properties and Structural Evolution of Supercooled Metallic Liquids

Author: Matthew E. Blodgett

Publisher:

Published: 2015

Total Pages: 464

ISBN-13:

DOWNLOAD EBOOK

Metallic glasses (and glasses in general) offer unique material properties compared to their crystalline counterparts. Yet the physics of the glass transition remain poorly understood. By examining the evolution of properties in the liquid as it is cooled toward the glass transition we hope to discern how they relate to glass formation. Of particular interest is the concept of kinetic fragility, first defined in terms of the viscosity behavior near the glass transition, and what it means for a high temperature liquid to be "fragile" or "strong." This dissertation presents several studies of metallic liquids using the electrostatic levitation technique. A method for determining the evaporation rate of samples is developed, an important factor for consideration in many experiments and industrial applications. It may also yield further insights when coupled with surface tension measurements, a technique for which is also developed here, with encouraging preliminary results. A method of extracting additional structural information from X-ray diffraction on a related set of alloys is presented and applied to liquid Cu-Zr alloys; this is the first time to this author's knowledge that this technique has been applied to liquids. The high-temperature viscosity of a large set of alloys is measured and it is found that they obey a simple universal curve with only two parameters. These parameters are closely related to fundamental properties of the liquid, the infinite temperature viscosity limit and the glass transition temperature. The relationship of glass-formability to kinetic and thermodynamic properties is examined in CuZrAl alloys. The existence of a structural crossover temperature is examined in the Vit106 alloy and microgravity experiment designs are presented for upcoming experiments on the International Space Station. Finally, a new procedure for acquiring and analyzing surface tension data with the oscillating drop method is developed to account for the effect of sample rotation, with results presented for a variety of samples, creating intriguing possibilities for future research.


Structural Evolution, Chemical Order, and Crystallization of Metallic Liquids and Glasses

Structural Evolution, Chemical Order, and Crystallization of Metallic Liquids and Glasses

Author: Mark Lyell Johnson

Publisher:

Published: 2015

Total Pages: 291

ISBN-13:

DOWNLOAD EBOOK

Over the last 60 years, bulk metallic glasses have emerged as a new class of materials with highly desirable material properties. Their high strength, high elasticity, and corrosion resistance are attractive properties for viable commercial products. At its core, material properties are directly related to the underlying microstructure. By understanding the structural and chemical order in the liquid and undercooled liquid and their relationship to thermophysical properties such as viscosity, a greater understanding of bulk metallic glass formation can be achieved. In this dissertation, electrostatic levitation techniques are used to study the liquid in a containerless environment using a combination of X-ray and neutron scattering techniques. An X-ray diffraction study of liquid and glass Ni-Nb(-Ta) alloys reveals that an acceleration in the rate of structural ordering must take place near the glass transition, providing the framework for a structural description of fragility. X-ray diffraction and thermophysical property measurements of Zr-Ni binary alloys further characterize the structural connection to viscosity, and reveal signatures of chemical ordering in the liquid. By combining X-ray and neutron scattering measurements, the topological and chemical order in Zr80Pt20 and Zr77Rh23 liquids is characterized. Very different chemical order is found between these alloys, despite their remarkable similarity in topological order. Due to this structural similarity, a new metastable phase is predicted and later identified emerging from a deeply supercooled Zr77Rh23 liquid. Zr77Rh23 is found to have many metastable crystallization pathways, which are further characterized here. Through simultaneous wide-angle and small-angle X-ray scattering, the devitrification behavior of a bulk metallic glass (Vitreloy 105) is investigated and is found to decompose into two distinct compositions during crystallization. By understanding crystallization pathways in good glass-forming alloys, a better understanding of glass formation and its connections to structural and thermophysical properties can be achieved.


Ground and Flight Based Studies of Nucleation and Thermophysical Properties in Metallic Glass Forming Systems

Ground and Flight Based Studies of Nucleation and Thermophysical Properties in Metallic Glass Forming Systems

Author: Christopher Eric Pueblo

Publisher:

Published: 2016

Total Pages: 185

ISBN-13:

DOWNLOAD EBOOK

Metallic glasses are formed by cooling a liquid from high temperature to below the glass transition without crystallization. Due to their soft magnetic properties, high strength and elasticity, and superb corrosion resistance, metallic glasses are excellent candidate materials for technological and industrial applications. These desirable qualities ultimately arise from the atomic structure, so precise knowledge of how chemical and structural ordering influence the liquid's physical properties, such as density, viscosity, and specific heat, can improve the understanding of metallic glass formation. This dissertation presents results of structural and thermophysical property measurements conducted on metallic liquids and glasses, using differential scanning calorimetry (DSC), electrostatic levitation (ESL), and electromagnetic levitation (EML) techniques. The kinetic properties of glasses and liquids are often characterized by their fragility, which is generally defined from the temperature dependence of the viscosity. A study of fragility in both the low-temperature glass and the high-temperature liquid finds that the activation energy for crystallization correlates with the liquid's viscosity behavior, and hence with fragility. A survey of a broad range of thermophysical properties and their relationship to glass-forming ability (GFA) is conducted, and finds that densely packed, highly viscous liquids tend to more easily form glasses. The nature of the repulsive component of the liquid's interatomic pair potential, as determined from high-energy synchrotron X-ray scattering, is found to also directly correlate with fragility, providing a clear connection between the liquid's structure and dynamics. The temperature, TA, which corresponds to the onset of cooperative dynamical processes, is proposed as a more appropriate scaling temperature than the glass transition temperature, Tg. Viscosity, specific heat, and nucleation measurements, performed using EML techniques in microgravity aboard parabolic flights and the International Space Station (ISS), are compared with terrestrial-based ESL measurements to assess the influence of gravity on the physical properties of the liquid and on the nucleation step in crystallization. A specific heat signature consistent with the onset of cooperativity is observed at TA, further supporting the claim that it corresponds to a fundamental crossover in the liquid.


Molecular Dynamics of Glass-Forming Systems

Molecular Dynamics of Glass-Forming Systems

Author: George Floudas

Publisher: Springer Science & Business Media

Published: 2010-11-25

Total Pages: 183

ISBN-13: 3642049028

DOWNLOAD EBOOK

Pressure is one of the essential thermodynamic variables that, due to some former experimental difficulties, was long known as the “forgotten variable.” But this has changed over the last decade. This book includes the most essential first experiments from the 1960's and reviews the progress made in understanding glass formation with the application of pressure in the last ten years. The systems include amorphous polymers and glass-forming liquids, polypeptides and polymer blends. The thermodynamics of these systems, the relation of the structural relaxation to the chemical specificity, and their present and future potential applications are discussed in detail. The book provides (a) an overview of systems exhibiting glassy behavior in relation to their molecular structure and provides readers with the current state of knowledge on the liquid-to-glass transformation, (b) emphasizes the relation between thermodynamic state and dynamic response and (c) shows that the information on the pressure effects on dynamics can be employed in the design of materials for particular applications. It is meant to serve as an advanced introductory book for scientists and graduate students working or planning to work with dynamics. Several scientific papers dealing with the effects of pressure on dynamics have appeared in leading journals in the fields of physics in the last ten years. The book provides researchers and students new to the field with an overview of the knowledge that has been gained in a coherent and comprehensive way.


The Thermophysical Properties of Metallic Liquids

The Thermophysical Properties of Metallic Liquids

Author: Takamichi Iida

Publisher: Oxford University Press

Published: 2015-10-15

Total Pages: 296

ISBN-13: 0191046213

DOWNLOAD EBOOK

This first volume provides the basic matters needed for understanding the thermophysical properties of metallic liquids and for developing reliable models to accurately predict the thermophysical properties of almost all metallic elements in the liquid state, together with methods for quantitative assessment of models/equations. The authors also review the structure of metallic liquids, which is based on the theory of liquids, followed by density, volume expansivity, thermodynamic properties (evaporation enthalpy, vapour pressure, heat capacity), sound velocity, surface tension,viscosity, diffusion, and electrical and thermal conductivities. Finally, the essential points of methods used for measuring these experimental data are presented.


Glassy, Amorphous and Nano-Crystalline Materials

Glassy, Amorphous and Nano-Crystalline Materials

Author: Jaroslav Šesták

Publisher: Springer Science & Business Media

Published: 2010-10-26

Total Pages: 392

ISBN-13: 904812882X

DOWNLOAD EBOOK

Provides a summary of non-equilibrium glassy and amorphous structures and their macro- and microscopic thermal properties. The book contains a carefully selected works of fourteen internationally recognized scientists involving the advances of the physics and chemistry of the glassy and amorphous states.


Physical Metallurgy of Bulk Metallic Glass-Forming Liquids

Physical Metallurgy of Bulk Metallic Glass-Forming Liquids

Author: Isabella Gallino

Publisher: Springer

Published: 2024-11-06

Total Pages: 0

ISBN-13: 9783031715358

DOWNLOAD EBOOK

This book deepens the current understanding of the thermodynamics and kinetics of metallic glass-forming liquids, and their connection with the glass-formation process in terms of fundamental physical metallurgy concepts. It surveys and reports on the progress made in the last few decades to access the ultra-viscous liquid state of thermally stable bulk metallic glass (BMG) forming alloys and study the changes in atomic structure, viscosity, and enthalpy during the vitrification including physical aging. Featuring a comprehensive look at the physical properties of the undercooled liquid in the ultra-viscous state at temperatures near the glass transition, the book reports on detailed investigations of the thermodynamic functions, viscosity, volume, relaxation time, and structural ordering in the undercooled liquid. Additionally, it introduces state-of-the-art in-situ characterization tools such as chip-calorimetry, synchrotron x-ray diffraction, and x-ray photon correlation spectroscopy as applied to novel studies of liquid–liquid transitions in the supercooled liquid and in the vicinity of the glass transition, and establishes these common, if not universal, phenomena in BMG-forming alloys. This book is intended for researchers, graduate students, and professionals in the fields of materials science, physical metallurgy, and condensed matter physics, who are interested in the thermodynamics and kinetics of metallic glass-forming liquids and their connection with the glass formation process.