Computational Protein Design

Computational Protein Design

Author: Ilan Samish

Publisher: Humana

Published: 2016-12-03

Total Pages: 0

ISBN-13: 9781493966356

DOWNLOAD EBOOK

The aim this volume is to present the methods, challenges, software, and applications of this widespread and yet still evolving and maturing field. Computational Protein Design, the first book with this title, guides readers through computational protein design approaches, software and tailored solutions to specific case-study targets. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Protein Design aims to ensure successful results in the further study of this vital field.


Catalysis in Chemistry and Enzymology

Catalysis in Chemistry and Enzymology

Author: William P. Jencks

Publisher: Courier Corporation

Published: 1987-01-01

Total Pages: 866

ISBN-13: 9780486654607

DOWNLOAD EBOOK

Exceptionally clear coverage of mechanisms for catalysis, forces in aqueous solution, carbonyl- and acyl-group reactions, practical kinetics, more.


The PyRosetta Interactive Platform for Protein Structure Prediction and Design

The PyRosetta Interactive Platform for Protein Structure Prediction and Design

Author: Jeffrey J Gray

Publisher: Createspace Independent Publishing Platform

Published: 2014-08-26

Total Pages: 0

ISBN-13: 9781500968274

DOWNLOAD EBOOK

TALARIS UPDATE INCLUDED ... This book contains a set of workshops which teach the PyRosetta program for computational protein structure prediction and design. PyRosetta (http: //www.pyrosetta.org) is a Python-based interactive platform for accessing the objects and algorithms within the Rosetta protein structure prediction suite. Rosetta, developed by a consortium of laboratories in the Rosetta Commons, has an unmatched variety of functionalities and is one of the most accurate protein structure prediction and design approaches. The workshops teach how to measure and manipulate protein conformations, calculate energies in low- and high-resolution representations, fold proteins from sequence, model variable regions of proteins (loops), dock proteins or small molecules, design protein sequences, and build custom protocols for operations tailored to particular biomolecular applications.


Prediction of Protein Secondary Structure

Prediction of Protein Secondary Structure

Author: Yaoqi Zhou

Publisher: Humana

Published: 2016-10-28

Total Pages: 0

ISBN-13: 9781493964048

DOWNLOAD EBOOK

This thorough volume explores predicting one-dimensional functional properties, functional sites in particular, from protein sequences, an area which is getting more and more attention. Beginning with secondary structure prediction based on sequence only, the book continues by exploring secondary structure prediction based on evolution information, prediction of solvent accessible surface areas and backbone torsion angles, model building, global structural properties, functional properties, as well as visualizing interior and protruding regions in proteins. Written for the highly successful Methods in Molecular Biology series, the chapters include the kind of detail and implementation advice to ensure success in the laboratory. Practical and authoritative, Prediction of Protein Secondary Structure serves as a vital guide to numerous state-of-the-art techniques that are useful for computational and experimental biologists.


Modern Biocatalysis

Modern Biocatalysis

Author: Gavin Williams

Publisher: Royal Society of Chemistry

Published: 2018-05-31

Total Pages: 594

ISBN-13: 1788014537

DOWNLOAD EBOOK

The synergy between synthetic biology and biocatalysis is emerging as an important trend for future sustainable processes. This book reviews all modern and novel techniques successfully implemented in biocatalysis, in an effort to provide better performing enzymatic systems and novel biosynthetic routes to (non-)natural products. This includes the use of molecular techniques in protein design and engineering, construction of artificial metabolic pathways, and application of computational methods for enzyme discovery and design. Stress is placed on current ‘hot’ topics in biocatalysis, where recent advances in research are defining new grounds in enzyme-catalyzed processes. With contributions from leading academics around the world, this book makes a ground-breaking contribution to this progressive field and is essential reading for graduates and researchers investigating (bio)catalysis, enzyme engineering, chemical biology, and synthetic biology.


Directed Enzyme Evolution: Advances and Applications

Directed Enzyme Evolution: Advances and Applications

Author: Miguel Alcalde

Publisher: Springer

Published: 2017-02-14

Total Pages: 286

ISBN-13: 3319504134

DOWNLOAD EBOOK

This book focuses on some of the most significant advances in enzyme engineering that have been achieved through directed evolution and hybrid approaches. On the 25th anniversary of the discovery of directed evolution, this volume is a tribute to the pioneers of this thrilling research field, and at the same time provides a comprehensive overview of current research and the state of the art. Directed molecular evolution has become the most reliable and robust method to tailor enzymes, metabolic pathways or even whole microorganisms with improved traits. By mirroring the Darwinian algorithm of natural selection on a laboratory scale, new biomolecules of invaluable biotechnological interest can now be engineered in a manner that surpasses the boundaries of nature. The volume is divided into two sections, the first of which provides an update on recent successful cases of enzyme ensembles from different areas of the biotechnological spectrum, including tryptophan synthases, unspecific peroxygenases, phytases, therapeutic enzymes, stereoselective enzymes and CO2-fixing enzymes. This section also provides information on the directed evolution of whole cells. The second section of the book summarizes a variety of the most applicable methods for library creation, together with the future trends aimed at bringing together directed evolution and in silico/computational enzyme design and ancestral resurrection.


Protein Engineering

Protein Engineering

Author: Huimin Zhao

Publisher: John Wiley & Sons

Published: 2021-08-23

Total Pages: 41

ISBN-13: 3527344705

DOWNLOAD EBOOK

A one-stop reference that reviews protein design strategies to applications in industrial and medical biotechnology Protein Engineering: Tools and Applications is a comprehensive resource that offers a systematic and comprehensive review of the most recent advances in the field, and contains detailed information on the methodologies and strategies behind these approaches. The authors—noted experts on the topic—explore the distinctive advantages and disadvantages of the presented methodologies and strategies in a targeted and focused manner that allows for the adaptation and implementation of the strategies for new applications. The book contains information on the directed evolution, rational design, and semi-rational design of proteins and offers a review of the most recent applications in industrial and medical biotechnology. This important book: Covers technologies and methodologies used in protein engineering Includes the strategies behind the approaches, designed to help with the adaptation and implementation of these strategies for new applications Offers a comprehensive and thorough treatment of protein engineering from primary strategies to applications in industrial and medical biotechnology Presents cutting edge advances in the continuously evolving field of protein engineering Written for students and professionals of bioengineering, biotechnology, biochemistry, Protein Engineering: Tools and Applications offers an essential resource to the design strategies in protein engineering and reviews recent applications.


Enzyme Catalysis in Organic Synthesis, 3 Volume Set

Enzyme Catalysis in Organic Synthesis, 3 Volume Set

Author: Karlheinz Drauz

Publisher: John Wiley & Sons

Published: 2012-03-26

Total Pages: 2143

ISBN-13: 3527325476

DOWNLOAD EBOOK

This comprehensive three-volume set is the standard reference in the field of organic synthesis, catalysis and biocatalysis. Edited by a highly experienced and highly knowledgeable team with a tremendous amount of experience in this field and its applications, this edition retains the successful concept of past editions, while the contents are very much focused on new developments in the field. All the techniques described are directly transferable from the lab to the industrial scale, making for a very application-oriented approach. A must for all chemists and biotechnologists.


Introduction to Proteins

Introduction to Proteins

Author: Amit Kessel

Publisher: CRC Press

Published: 2018-03-22

Total Pages: 1423

ISBN-13: 1498747213

DOWNLOAD EBOOK

Introduction to Proteins provides a comprehensive and state-of-the-art introduction to the structure, function, and motion of proteins for students, faculty, and researchers at all levels. The book covers proteins and enzymes across a wide range of contexts and applications, including medical disorders, drugs, toxins, chemical warfare, and animal behavior. Each chapter includes a Summary, Exercies, and References. New features in the thoroughly-updated second edition include: A brand-new chapter on enzymatic catalysis, describing enzyme biochemistry, classification, kinetics, thermodynamics, mechanisms, and applications in medicine and other industries. These are accompanied by multiple animations of biochemical reactions and mechanisms, accessible via embedded QR codes (which can be viewed by smartphones) An in-depth discussion of G-protein-coupled receptors (GPCRs) A wider-scale description of biochemical and biophysical methods for studying proteins, including fully accessible internet-based resources, such as databases and algorithms Animations of protein dynamics and conformational changes, accessible via embedded QR codes Additional features Extensive discussion of the energetics of protein folding, stability and interactions A comprehensive view of membrane proteins, with emphasis on structure-function relationship Coverage of intrinsically unstructured proteins, providing a complete, realistic view of the proteome and its underlying functions Exploration of industrial applications of protein engineering and rational drug design Each chapter includes a Summary, Exercies, and References Approximately 300 color images Downloadable solutions manual available at www.crcpress.com For more information, including all presentations, tables, animations, and exercises, as well as a complete teaching course on proteins' structure and function, please visit the author's website: http://ibis.tau.ac.il/wiki/nir_bental/index.php/Introduction_to_Proteins_Book. Praise for the first edition "This book captures, in a very accessible way, a growing body of literature on the structure, function and motion of proteins. This is a superb publication that would be very useful to undergraduates, graduate students, postdoctoral researchers, and instructors involved in structural biology or biophysics courses or in research on protein structure-function relationships." --David Sheehan, ChemBioChem, 2011 "Introduction to Proteins is an excellent, state-of-the-art choice for students, faculty, or researchers needing a monograph on protein structure. This is an immensely informative, thoroughly researched, up-to-date text, with broad coverage and remarkable depth. Introduction to Proteins would provide an excellent basis for an upper-level or graduate course on protein structure, and a valuable addition to the libraries of professionals interested in this centrally important field." --Eric Martz, Biochemistry and Molecular Biology Education, 2012


Computer Assisted Modeling

Computer Assisted Modeling

Author: National Research Council

Publisher: National Academies Press

Published: 1987-02-01

Total Pages: 186

ISBN-13: 0309062284

DOWNLOAD EBOOK

In much of biology, the search for understanding the relation between structure and function is now taking place at the macromolecular level. Proteins, nucleic acids, and polysaccharides are macromolecule--polymers formed from families of simpler subunits. Because of their size and complexity, the polymers are capable of both inter- and intramolecular interactions. These interactions confer upon the polymers distinctive three-dimensional shapes. These tertiary configurations, in turn, determine the function of the macromolecule. Computers have become so inextricably involved in empirical studies of three-dimensional macromolecular structure that mathematical modeling, or theory, and experimental approaches are interrelated aspects of a single enterprise.