The only work to date to collect data gathered during the American and Soviet missions in an accessible and complete reference of current scientific and technical information about the Moon.
Structure of the Moon's Surface focuses on the importance of certain features of the Moon's surface that have frequently been disregarded in the past, largely because of lack of knowledge of them. Topics covered include the librations of the Moon; height determinations of the points on the lunar surface; luminous intensity and luminescence of the lunar rocks; the color of moonlight and composition of the Moon's surface; and the Moon's temperature and atmosphere. This book is comprised of 14 chapters and begins with a review of important physical problems associated with the Moon, including its motion and figure as well as the luminous intensity and luminescence of its rocks. The following chapters discuss the polarization of light reflected by the Moon; the problem of the Moon's atmosphere; the probable nature of the Moon's surface; and changes occurring on the Moon. The Moon's ray and grid systems, lattice patterns, rilles and faults, and distribution and frequency of craters are also considered. The final chapter is devoted to the origin of the Moon's surface. This monograph will be of use to both professional and amateur lunar astronomers.
Long before Galileo published his discoveries about Jupiter, lunar craters, and the Milky Way in the Starry Messenger in 1610, people were fascinated with the planets and stars around them. That interest continues today, and scientists are making new discoveries at an astounding rate. Ancient lake beds on Mars, robotic spacecraft missions, and new definitions of planets now dominate the news. How can you take it all in? Start with the new Encyclopedia of the Solar System, Second Edition.This self-contained reference follows the trail blazed by the bestselling first edition. It provides a framework for understanding the origin and evolution of the solar system, historical discoveries, and details about planetary bodies and how they interact—and has jumped light years ahead in terms of new information and visual impact. Offering more than 50% new material, the Encyclopedia includes the latest explorations and observations, hundreds of new color digital images and illustrations, and more than 1,000 pages. It stands alone as the definitive work in this field, and will serve as a modern messenger of scientific discovery and provide a look into the future of our solar system.· Forty-seven chapters from 75+ eminent authors review fundamental topics as well as new models, theories, and discussions· Each entry is detailed and scientifically rigorous, yet accessible to undergraduate students and amateur astronomers· More than 700 full-color digital images and diagrams from current space missions and observatories amplify the chapters· Thematic chapters provide up-to-date coverage, including a discussion on the new International Astronomical Union (IAU) vote on the definition of a planet· Information is easily accessible with numerous cross-references and a full glossary and index
Volume 60 of Reviews in Mineralogy and Geochemistry assesses the current state of knowledge of lunar geoscience, given the data sets provided by missions of the 1990's, and lists remaining key questions as well as new ones for future exploration to address. It documents how a planet or moon other than the world on which we live can be studied and understood in light of integrated suites of specific kinds of information. The Moon is the only body other than Earth for which we have material samples of known geologic context for study. This volume seeks to show how the different kinds of information gained about the Moon relate to each other and also to learn from this experience, thus allowing more efficient planning for the exploration of other worlds.
While the Moon was once thought to hold the key to space exploration, in recent decades, the U.S. has largely turned its sights toward Mars and other celestial bodies instead. In The Value of the Moon, lunar scientist Paul Spudis argues that the U.S. can and should return to the moon in order to remain a world leader in space utilization and development and a participant in and beneficiary of a new lunar economy. Spudis explores three reasons for returning to the Moon: it is close, it is interesting, and it is useful. The proximity of the Moon not only allows for frequent launches, but also control of any machinery we place there. It is interesting because recorded deep on its surface and in its craters is the preserved history of the moon, the sun, and indeed the entire galaxy. And finally, the moon is useful because it is rich with materials and energy. The moon, Spudis argues, is a logical base for further space exploration and even a possible future home for us all. Throughout his work, Spudis incorporates details about man's fascination with the moon and its place in our shared history. He also explores its religious, cultural, and scientific resonance and assesses its role in the future of spaceflight and our national security and prosperity.
Our Solar System contains more moons than planets. They show astonishing variety, and some look more likely than Mars to host microbial life. David Rothery describes these fascinating small worlds, their discovery, names, and what they can tell us about our solar system.
Lunar Science: A Post-Apollo View: Scientific Results and Insights from the Lunar Samples explains the scientific results and discoveries of the manned Apollo lunar missions as they are understood. The emphasis is less on sample description and data and more on the interpretative aspects of the study, with the aim of providing a coherent story of the evolution of the moon and its origin as revealed by the lunar samples and the Apollo missions. This text has seven chapters; the first of which provides a historical background of efforts to study the moon prior to the Apollo missions, including lunar photogeologic mapping and direct exploration by spacecraft. Attention then turns to the Apollo missions and the lunar samples collected, beginning with Apollo 11 that landed on the moon on July 20, 1969 and followed by more missions. The next chapter describes the geology of the moon, with emphasis on craters, central peaks and peak rings, the large ringed basins, rilles, and maria lava flows. The reader is also introduced to the nature of the lunar surface material, the maria basalts, the highlands, and the moon's interior. This book concludes with a discussion on the evidence that has been gathered by the Apollo missions that offers insights into the origin and evolution of the moon. An epilogue reflects on the usefulness of manned space flight. This book will appeal to lunar scientists as well as to those with an interest in astronomy and space exploration.
After several decades spent in astronomical semi-obscurity, the Moon has of late suddenly emerged as an object of considerable interest to students of astronomy as well as of other branches of natural science and technology; and the reasons for this are indeed of historical significance. For the Moon has now been destined to be the first celestial body outside the confines of our own planet to be reconnoitered at a close range by means of spacecraft built and sent out by human hand for this purpose. At the time of writing, not less than ten such spacecraft of American as well as Rus sian origin landed already on different parts of the lunar surface; and some of these provided remarkable records of its detail structure to a spatial resolution increased thousandfold over that attained so far from our ground-based facilities. A renewed interest in our satellite, stemming from this source, on the part of the students of many branches of science and technology has also underlined the need for presenting the gist of our present knowledge in this field in the form that could serve as an introduction to the study of the Moon not only for astronomers, but also for serious students from other branches of science or technology.