A first course in two of the 20th century's most exciting contributions to physics: special relativity and quantum theory. Historical material is incorporated into the exposition. Coverage is broad and deep, offering the instructor flexibility in presentation. Nearly every section contains at least one illustrative example (with all calculations), and each chapter has a wide selection of problems. Topics covered include relativistic dynamics, quantum mechanics, parity, quantum statistical physics, the nuclear shell model, fission, fusion, color and the strong interaction, gauge symmetries, and grand unification.
This textbook is based on a mixture of simplified institutional theory and solved problems. The choice has been to limit the attention to key concepts and to the most typical aspects of atoms, molecules and solids, looking at the basic "structural" aspects without dealing in detail with the properties originating from them. The problems are entangled to the formal presentation of the arguments, being designed as an intrinsic part of the pathway the student should move by in order to grasp the key concepts.
A knowledge of atomic theory should be an essential part of every physicist's and chemist's toolkit. This book provides an introduction to the basic ideas that govern our understanding of microscopic matter, and the essential features of atomic structure and spectra are presented in a direct and easily accessible manner. Semi-classical ideas are reviewed and an introduction to the quantum mechanics of one and two electron systems and their interaction with external electromagnetic fields is featured. Multielectron atoms are also introduced, and the key methods for calculating their properties reviewed.
"Structure of Matter, Structure of Mind provides a complete, clear, unified theory of the foundations of mathematics, language, and the human mind. Mind in the human sense is no longer distinguished by a few chance details of zoological classification, but, like physics, is based directly in first principles. Because sentences share all functional mechanisms with equations - a main verb, linguistic deep-structure, recursion, discretencess, linear delivery, truth and falsity - language shares a common source with arithmetic and algebra. Because truth or falsity of equations depends on their symmetry about the "equals", equations are self-regulating, not arbitrary, and reflect the founding properties of matter. Sentences of ordinary language are formed from equations by the turning of a single key - that of symmetry - unlocking the human mind into the fascinating non-Euclidean world of 21[superscript st] century physics and beyond."--BOOK JACKET.
For beginners and specialists in other fields: the Nobel Laureate's introduction to atomic spectra and their relationship to atomic structures, stressing basics in a physical, rather than mathematical, treatment. 80 illustrations.
Bringing together a wide collection of ideas, reviews, analyses and new research on particulate and structural concepts of matter, Concepts of Matter in Science Education informs practice from pre-school through graduate school learning and teaching and aims to inspire progress in science education. The expert contributors offer a range of reviews and critical analyses of related literature and in-depth analysis of specific issues, as well as new research. Among the themes covered are learning progressions for teaching a particle model of matter, the mental models of both students and teachers of the particulate nature of matter, educational technology, chemical reactions and chemical phenomena, chemical structure and bonding, quantum chemistry and the history and philosophy of science relating to the particulate nature of matter. The book will benefit a wide audience including classroom practitioners and student teachers at every educational level, teacher educators and researchers in science education. "If gaining the precise meaning in particulate terms of what is solid, what is liquid, and that air is a gas, were that simple, we would not be confronted with another book which, while suggesting new approaches to teaching these topics, confirms they are still very difficult for students to learn". Peter Fensham, Emeritus Professor Monash University, Adjunct Professor QUT (from the foreword to this book)