Highly illustrated, self-contained textbook covering the fundamentals of crystallography, symmetry and diffraction, providing a full appreciation of material structure for advanced undergraduate or graduate courses within materials science and engineering. Includes over 430 illustrations and 400 homework problems. Solutions, data files for crystal structures, and appendices, available from www.cambridge.org/9780521651516.
The current book consists of twenty-four chapters divided into three sections. Section I includes fourteen chapters in electric and magnetic ceramics which deal with modern specific research on dielectrics and their applications, on nanodielectrics, on piezoceramics, on glass ceramics with para-, anti- or ferro-electric active phases, of varistors ceramics and magnetic ceramics. Section II includes seven chapters in bioceramics which include review information and research results/data on biocompatibility, on medical applications of alumina, zirconia, silicon nitride, ZrO2, bioglass, apatite-wollastonite glass ceramic and b-tri-calcium phosphate. Section III includes three chapters in applications of ceramics in environmental improvement and protection, in water cleaning, in metal bearing wastes stabilization and in utilization of wastes from ceramic industry in concrete and concrete products.
This book is based on the lectures and contributions of the NATO Advanced Study Institute on “Nanoscience and Nanotechnology in Security and Protection Against CBRN Threats” held in Sozopol, Bulgaria, September 2019. It gives a broad overview on this topic as it combines articles addressing the preparation and characterization of different nanoscaled materials (metals, oxides, glasses, polymers, carbon-based, etc.) in the form of nanowires, nanoparticles, nanocomposites, nanodots, thin films, etc. and contributions on their applications in diverse security and safety related fields. In addition, it presents an interdisciplinary approach drawing on the Nanoscience and Nanotechnology know-how of authors from Physics, Chemistry, Engineering, Materials Science and Biology. A further plus-point of the book, which represents the knowledge of experts from over 20 countries, is the combination of longer papers introducing the background on a certain topic, and brief contributions highlighting specific applications in different security areas.
Exploration of fundamentals of x-ray diffraction theory using Fourier transforms applies general results to various atomic structures, amorphous bodies, crystals, and imperfect crystals. 154 illustrations. 1963 edition.
Here, more than 20 experts from leading research institutes around the world present the entire scope of this rapidly developing field. In so doing, they cover a wide range of topics, including the characterization and investigation of structural, dielectric and piezoelectric properties of ceramic materials, a well as phase transitions, electrical and optical properties and microscopic investigations. Another feature is a complete profile of the properties of polar oxides -- from their proof to their latest applications. Throughout, the authors review, discuss and assess the material properties with regard to new and advanced characterization and imaging techniques. For physicists, physicochemists, semiconductor and solid state physicists, materials scientists, and students of chemistry and physics.
Here is a brilliant book that covers the major aspects of nanomaterials production. It integrates the many and varied chemical, material and thermo-dynamical facets of production, offering readers a new and unique approach to the subject. The mechanical, optical, and magnetic characteristics of nanomaterials are also presented in detail. Nanomaterials are a fast developing field of research and this book serves as both a reference work for researchers and a textbook for graduate students.
This book explores the recent advances in the field of shape memory polymers, whose ease of manufacturing and wide range of potential applications have spurred interest in the field. The book presents details about the synthesis, processing, characterization, and applications of shape memory polymers, their blends and composites. It provides a correlation of physical properties of shape memory polymers with macro, micro and nano structures. The contents of this book will be of interest to researchers across academia and industry.
Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices covers all aspects relating to the structural and electrical properties of HfO2 and its implementation into semiconductor devices, including a comparison to standard ferroelectric materials. The ferroelectric and field-induced ferroelectric properties of HfO2-based films are considered promising for various applications, including non-volatile memories, negative capacitance field-effect-transistors, energy storage, harvesting, and solid-state cooling. Fundamentals of ferroelectric and piezoelectric properties, HfO2 processes, and the impact of dopants on ferroelectric properties are also extensively discussed in the book, along with phase transition, switching kinetics, epitaxial growth, thickness scaling, and more. Additional chapters consider the modeling of ferroelectric phase transformation, structural characterization, and the differences and similarities between HFO2 and standard ferroelectric materials. Finally, HfO2 based devices are summarized. - Explores all aspects of the structural and electrical properties of HfO2, including processes, modelling and implementation into semiconductor devices - Considers potential applications including FeCaps, FeFETs, NCFETs, FTJs and more - Provides comparison of an emerging ferroelectric material to conventional ferroelectric materials with insights to the problems of downscaling that conventional ferroelectrics face
Dieses Buch beleuchtet die wichtigsten Aspekte der Verarbeitung und Charakterisierung von Ferroelektrika und Multiferroika auf Nanoebene, präsentiert eine umfassende Beschreibung der jeweiligen Eigenschaften und legt dabei den Schwerpunkt auf die Unterscheidung von Größeneffekten bei extrinsischen Eigenschaften wie Rand- oder Interface-Effekte. Eingegangen wird auch auf neuartige Nanoebene. Das Fachbuch ist in drei Abschnitte unterteilt und beschreibt die Verarbeitung (Nanostrukturierung), Charakterisierung (nanostrukturierter Materialien) und Nanoeffekte. Unter Rückgriff auf die Synergien zwischen Nano-Ferroelektrika und -Multiferroika werden Materialien behandelt, die auf allen Ebenen einer Nanostrukturierung unterzogen werden, von Technologien für keramische Materialien wie ferroelektrische Nanopulver, nanostrukturierte Keramiken und Dickschichten sowie magnetoelektrische Nanokomposit-Materialien bis hin zu freistehenden Nanoobjekten mit spezifischen Geometrien wie Nanodrähte und Nanoröhren auf verschiedenen Entwicklungsstufen. Grundlage des Buches ist die europäische Wissensplattform im Wissenschaftsbereich innerhalb der Aktion von COST (Europäische Zusammenarbeit in Wissenschaft und Technik) zu ein- und mehrphasigen Ferroika und Multiferroika mit begrenzten Geometrien (SIMUFER, Ref. MP0904). Die Autoren der Kapitelbeiträge wurden sorgfältig ausgewählt, haben allesamt ganz wesentlich zur Wissensbasis für das jeweilige Thema beigetragen und gehören vor allem zu den renommiertesten Wissenschaftlern des Fachgebiets.
This exciting new book is a unique compilation of data from a wide range of chemical and spectroscopic instrumentation and the integration of nanostructure characterisation drawn from physical, chemical, electrochemical, spectroscopic and electron microscopic measurements. It fills a gap in the current nanomaterials literature by documenting the latest research from scientific journals and patent literature to provide a concise yet balanced and integrated treatment of an interesting topic: titanium oxide nanostructures within the emerging fashionable area of nanomaterials. Of particular interest are the following key chapters: * Modification and Coating Techniques - provides a unique summary and discussion of available techniques to coat surfaces with nanostructured materials * Chemical Properties - relates structure to surface chemistry and hence applications * Structural and Physical Properties - reviews the relationship between nanostructure and physical properties providing a basis for the rationalisation of applications The book, a valuable reference point, is aimed at professionals, postgraduates and industrial research workers in nanomaterials. Readers will gain a knowledge of the methods for synthesising nanomaterials as well as an understanding of their structure and resulting physical characteristics and a knowledge of their (existing and potential) applications.