This volume of The Enzymes features high-caliber thematic articles on the topic of glycosylphosphatidylinositol (GPI) anchoring of proteins. - Contributions from leading authorities - Informs and updates on all the latest developments in the field
Biotechnology including medical applications depends on the yeast as biofermenter to produce many industrial products including pharmaceutical ones. Although yeasts are first known as useful microorganisms, some of them are identified as pathogens for plants, animals, and humans. Due to the simple cellular structure of the yeast among other microbial groups, it is used in the earliest investigations to determine the features of eukaryotic molecular biology, cell biology, and physiology. The economic income of some countries mainly depends on yeast for producing the economic products, such as France that depends on yeast for wine production. This book throws light on yeast and its important role in the medical applications.
Cell growth is highly regulated and is controlled by the TOR signaling network. Dysfunction of signaling pathways controlling cell growth results in cells of altered sizes and in turn causes developmental errors and a wide range of pathological conditions. An understanding of the TOR signaling network may lead to novel drugs for the treatment of, for example, cancer, diabetes, inflammation, muscle atrophy, learning disabilities, depression, obesity and aging. There has been an explosion of knowledge in this area in recent years and this volume provides an in-depth review of our current knowledge of TOR complexes by the leaders in the field. - Contributions from leading authorities - Informs and updates on all the latest developments in the field
The Enzymes, Volume 54 highlights new advances in enzymes, with new chapters on a variety of topics, including the History of The Enzymes, Impact of The Enzymes in chronicling biochemical processes and pathways, Metabolism and Catalysis, Mitochondrial ATP synthase, The respiratory chain, A century of mitochondrial research, Five decades of metalloenzymology, Mechanisms of catalysis, Mitochondrial fatty acid synthesis and associated processes, Signaling, MAPK cascades: Origins, mechanisms and current status, Sphingolipids: From structural components to signaling hubs, Protein Homeostasis and Hydrolysis, Mitochondrial AAA+ proteases, Hsp70 and JDP proteins: structure-function perspective on molecular chaperone activity. Other sections cover DNA Replication and Repair, Structure-function studies of DNA replication proteins, and Helicases required for nucleotide excision repair. - Provides the authority and expertise of leading contributors from an international board of authors - Updated release includes the latest information on enzymes
Molecules to Medicine with mTOR: Translating Critical Pathways into Novel Therapeutic Strategies is a one-stop reference that thoroughly covers the mechanistic target of rapamycin (mTOR). mTOR, also known as the mammalian target of rapamycin, is a 289-kDa serine/threonine protein kinase that is ubiquitous throughout the body and has a critical role in gene transcription and protein formation, stem cell development, cell survival and senescence, aging, immunity, tissue regeneration and repair, metabolism, tumorigenesis, oxidative stress, and pathways of programmed cell death that include apoptosis and autophagy. Incorporating a translational medicine approach, this important reference highlights the basic cellular biology of mTOR pathways, presents the role of mTOR during normal physiologic function and disease, and illustrates how the mechanisms of mTOR can be targeted for current and future therapeutic treatment strategies. Coverage of mTOR signaling includes the entire life cycle of cells that impacts multiple systems of the body including those of nervous, cardiovascular, immune, musculoskeletal, endocrine, reproductive, renal, and respiratory origin. - Covers the role of mTOR by internationally recognized expert contributors in the field. - Provides a clear picture of the complexity of mTOR signaling as well as of the different approaches that could target this pathway at various levels. - Includes analysis of the role of mTOR and in both health and disease. - Serves as an important resource for a broad audience of healthcare providers, scientists, drug developers, and students in both clinical and research settings.
The recent dramatic expansion of our knowledge about how cell surface receptors transmit signals to the nucleus, together with the identification of key signaling and cell-cycle-regulating molecules, has provided a major opportunity to search for novel targets for therapeutic intervention in many diseases. In Signaling Networks and Cell Cycle Control: The Molecular Basis of Cancer and Other Diseases, leading scientists summarize this knowledge and describe the effort to design and synthesize inhibiting molecules, as well as to evaluate their biochemical and biological activities. They review the relevant cell surface receptors, their ligands, and their downstream pathways. Also examined are the latest findings on the components of novel signaling networks controlling the activity of nuclear transcription factors and cell cycle regulatory molecules. Rich in cutting-edge insights and authoritative critical analysis, Signaling Networks and Cell Cycle Control: The Molecular Basis of Cancer and Other Diseases presents a wealth of information on the emerging principles of the field, as well as an invaluable guide for all experimental and clinical investigators of cell regulation and its rapidly emerging pharmacological opportunities today.
Biological processes are driven by complex systems of functionally interacting signaling molecules. Thus, understanding signaling molecules is essential to explain normal or pathological biological phenomena. A large body of clinical and experimental data has been accumulated over these years, albeit in fragmented state. Hence, systems biological approaches concomitant with the understanding of each molecule are ideal to delineate signaling networks/pathways involved in the biologically important processes. The control of these signaling pathways will enrich our healthier life. Currently, there are more than 30,000 genes in human genome. However, not all the proteins encoded by these genes work equally in order to maintain homeostasis. Understanding the important signaling molecules as completely as possible will significantly improve our research-based teaching and scientific capabilities. This encyclopedia presents 350 biologically important signaling molecules and the content is built on the core concepts of their functions along with early findings written by some of the world’s foremost experts. The molecules are described by recognized leaders in each molecule. The interactions of these single molecules in signal transduction networks will also be explored. This encyclopedia marks a new era in overview of current cellular signaling molecules for the specialist and the interested non-specialist alike During past years, there were multiple databases to gather this information briefly and very partially. Amidst the excitement of these findings, one of the great scientific tasks of the coming century is to bring all the useful information into a place. Such an approach is arduous but at the end will infuse the lacunas and considerably be a streamline in the understanding of vibrant signaling networks. Based on this easy-approach, we can build up more complicated biological systems.
This latest volume in Advances in Genetics covers the genetics of Circadian rhythms. With an international group of authors this volume is the latest offering in this widely praised series.
Recent breakthroughs in the field of cell growth, particularly in the control of cell size, are reviewed by experts in the three major divisions of the field: growth of individual cells, growth of organs, and regulation of cell growth in the contexts of development and cell division. This book is an introductory overview of the field and should be adaptable as a textbook.