Protein-Protein Interactions

Protein-Protein Interactions

Author: Weibo Cai

Publisher: BoD – Books on Demand

Published: 2012-03-30

Total Pages: 488

ISBN-13: 9535103970

DOWNLOAD EBOOK

Proteins are indispensable players in virtually all biological events. The functions of proteins are coordinated through intricate regulatory networks of transient protein-protein interactions (PPIs). To predict and/or study PPIs, a wide variety of techniques have been developed over the last several decades. Many in vitro and in vivo assays have been implemented to explore the mechanism of these ubiquitous interactions. However, despite significant advances in these experimental approaches, many limitations exist such as false-positives/false-negatives, difficulty in obtaining crystal structures of proteins, challenges in the detection of transient PPI, among others. To overcome these limitations, many computational approaches have been developed which are becoming increasingly widely used to facilitate the investigation of PPIs. This book has gathered an ensemble of experts in the field, in 22 chapters, which have been broadly categorized into Computational Approaches, Experimental Approaches, and Others.


Ancestral Sequence Reconstruction

Ancestral Sequence Reconstruction

Author: David A Liberles

Publisher: Oxford University Press

Published: 2007-05-31

Total Pages: 267

ISBN-13: 0199299188

DOWNLOAD EBOOK

Ancestral sequence reconstruction is a technique of growing importance in molecular evolutionary biology and comparative genomics. As a powerful tool for testing evolutionary and ecological hypotheses, as well as uncovering the link between sequence and molecular phenotype, there are potential applications in a range of fields.Ancestral Sequence Reconstruction starts with a historical overview of the field, before discussing the potential applications in drug discovery and the pharmaceutical industry. This is followed by a section on computational methodology, which provides a detailed discussion of the available methods for reconstructing ancestral sequences (including their advantages, disadvantages, and potential pitfalls). Purely computational applications of the technique are then covered, including wholeproteome reconstruction. Further chapters provide a detailed discussion on taking computationally reconstructed sequences and synthesizing them in the laboratory. The book concludes with a description of the scientific questions where experimental ancestral sequence reconstruction has been utilized toprovide insights and inform future research.This research level text provides a first synthesis of the theories, methodologies and applications associated with ancestral sequence recognition, while simultaneously addressing many of the hot topics in the field. It will be of interest and use to both graduate students and researchers in the fields of molecular biology, molecular evolution, and evolutionary bioinformatics.


On protein structure, function and modularity from an evolutionary perspective

On protein structure, function and modularity from an evolutionary perspective

Author: Robert Pilstål

Publisher: Linköping University Electronic Press

Published: 2018-05-31

Total Pages: 206

ISBN-13: 9176853470

DOWNLOAD EBOOK

We are compounded entities, given life by a complex molecular machinery. When studying these molecules we have to make sense of a diverse set of dynamical nanostructures with wast and intricate patterns of interactions. Protein polymers is one of the major groups of building blocks of such nanostructures which fold up into more or less distinct three dimensional structures. Due to their shape, dynamics and chemical properties proteins are able to perform a plethora of specific functions essential to all known cellular lifeforms. The connection between protein sequence, translated into protein structure and in the continuation into protein function is well accepted but poorly understood. Malfunction in the process of protein folding is known to be implicated in natural aging, cancer and degenerative diseases such as Alzheimer's. Protein folds are described hierarchically by structural ontologies such as SCOP, CATH and Pfam all which has yet to succeed in deciphering the natural language of protein function. These paradigmatic views centered on protein structure fail to describe more mutable entities, such as intrinsically disordered proteins (IDPs) which lack a clear defined structure. As of 2012, about two thirds of cancer patients was predicted to survive past 5 years of diagnosis. Despite this, about a third do not survive and numerous of successfully treated patients suffer from secondary conditions due to chemotherapy, surgery and the like. In order to handle cancer more efficiently we have to better understand the underlying molecular mechanisms. Elusive to standard methods of investigation, IDPs have a central role in pathology; dysfunction in IDPs are key factors in cellular system failures such as cancer, as many IDPs are hub regulators for major cell functions. These IDPs carry short conserved functional boxes, that are not described by known ontologies, which suggests the existence of a smaller entity. In an investigation of a pair of such boxes of c-MYC, a plausible structural model of its interacting with Pin1 emerged, but such a model still leaves the observer with a puzzle of understanding the actual function of that interaction. If the protein is represented as a graph and modeled as the interaction patterns instead of as a structural entity, another picture emerges. As a graph, there is a parable from that of the boxes of IDPs, to that of sectors of allosterically connected residues and the theory of foldons and folding units. Such a description is also useful in deciphering the implications of specific mutations. In order to render a functional description feasible for both structured and disordered proteins, there is a need of a model separate from form and structure. Realized as protein primes, patterns of interaction, which has a specific function that can be defined as prime interactions and context. With function defined as interactions, it might be possible that the discussion of proteins and their mechanisms is thereby simplified to the point rendering protein structural determination merely supplementary to understanding protein function. Människan byggs upp av celler, de i sin tur består av än mindre beståndsdelar; livets molekyler. Dessa fungerar som mekaniska byggstenar, likt maskiner och robotar som sliter vid fabrikens band; envar utförandes en absolut nödvändig funktion för cellens, och hela kroppens, fortsatta överlevnad. De av livets molekyler som beskrivs centralt i den här avhandling är proteiner, vilka i sin tur består utav en lång kedja, med olika typer av länkar, som likt garn lindar upp sig i ett nystan av en (mer eller mindre...) bestämd struktur som avgör dess roll och funktion i cellen. Intrinsiellt oordnade proteiner (IDP) går emot denna enkla åskådning; de är proteiner som saknar struktur och beter sig mer likt spaghetti i vatten än en maskin. IDP är ändå funktionella och bär på centrala roller i cellens maskineri; exempel är oncoproteinet c-Myc som agerar "gaspedal" för cellen - fel i c-Myc's funktion leder till att cellerna löper amok, delar sig hejdlöst och vi får cancer. Man har upptäckt att c-Myc har en ombytlig struktur vi inte kan se; studier av punktvisa förändringar, mutationer, i kedjan av byggstenar hos c-Myc visar att många länkar har viktiga roller i funktionen. Detta ger oss bättre förståelse om cancer men samtidigt är laboratoriearbetet både komplicerat och dyrt; här kan evolutionen vägleda oss och avslöja hemligheterna snabbare. Molekylär evolution studeras genom att beräkna variation i proteinkedjan mellan besläktade arter som finns lagrade i databaser; detta visar snabbt, via nätverksanalys och grafteori, vilka delar av proteinet som är centrala och kopplade till varandra av nödvändighet för artens fortlevnad. På så vis hjälper evolutionen oss att förstå proteinfunktioner via modeller baserade på proteinernas interaktioner snarare än deras struktur. Samma modeller kan nyttjas för att förstå dynamiska förlopp och skillnader mellan normala och patologiska varianter av proteiner; mutationer kan uppstå i vår arvsmassa som kan leda till sjukdom. Genom analys av proteinernas kopplingsnätverk i grafmodellerna kan man bättre förutsäga vilka mutationer som är farligare än andra. Dessutom har det visat sig att en sådan representation kan ge bättre förståelse för den normala funktionen hos ett protein än vad en proteinstruktur kan. Här introduceras även konceptet proteinprimärer, vilket är en abstrakt representation av proteiner centrerad på deras interaktiva mönster, snarare än på partikulär form och struktur. Det är en förhoppning att en sådan representation skall förenkla diskussionen anbelangande proteinfunktion så till den grad att strukturbestämmelse av proteiner, som är en mycket kostsam och tidskrävande process, till viss mån kan anses vara sekundär i betydelse jämfört med funktionellt modellerande baserat på evolutionära data extraherade ur våra sekvensdatabaser.


Protein-protein Recognition

Protein-protein Recognition

Author: Colin Kleanthous

Publisher: Frontiers in Molecular Biology

Published: 2000

Total Pages: 370

ISBN-13: 9780199637607

DOWNLOAD EBOOK

The purpose of Protein-Protein Recognition is to bring together concepts and systems pertaining to protein-protein interactions in a single unifying volume. In the light of the information from the genome sequencing projects and the increase in structural information it is an opportune time totry to make generalizations about how and why proteins form complexes with each other. The emphasis of the book is on heteromeric complexes (complexes in which each of the components can exist in an unbound state) and will use well-studied model systems to explain the processes of formingcomplexes. After an introductory section on the kinetics, thermodynamics, analysis, and classification of protein-protein interactions, weak, intermediate, and high affinity complexes are dealt with in turn. Weak affinity complexes are represented by electron transfer proteins and integrincomplexes. Anti-lysozyme antibodies, the MHC proteins and their interactions with T-cell receptors, and the protein interactions of eukaryotic signal transduction are the systems used to explain complexes with intermediate affinities. Finally, tight binding complexes are represented by theinteraction of protein inhibitors with serine proteases and by nuclease inhibitor complexes. Throughout the chapters common themes are the technologies which have had the greatest impact, how specificity is determined, how complexes are stabilized, and medical and industrial applications.


Protein-Protein Interactions

Protein-Protein Interactions

Author: Krishna Mohan Poluri

Publisher: Springer Nature

Published: 2021-05-19

Total Pages: 346

ISBN-13: 9811615942

DOWNLOAD EBOOK

This book provides a comprehensive overview of the fundamental aspects of protein-protein interactions (PPI), including a detailed account of the energetics and thermodynamics involved in these interactions. It also discusses a number of computational and experimental approaches for the prediction of PPI interactions and reviews their principles, advantages, drawbacks, and the recent developments. Further, it offers structural and mechanistic insights into the formation of protein-protein complexes and maps different PPIs into networks to delineate various pathways that operate at the cellular level. Lastly, it describes computational protein-protein docking techniques and discusses their implications for further experimental research. Given its scope, this book is a valuable resource for students, researchers, scientists, entrepreneurs, and medical/healthcare professionals.


Protein Modules and Protein-Protein Interactions

Protein Modules and Protein-Protein Interactions

Author:

Publisher: Elsevier

Published: 2002-11-24

Total Pages: 343

ISBN-13: 0080493750

DOWNLOAD EBOOK

Protein modules engage in a multitude of interactions with one another and with other cellular components, notably with DNA. These interactions are a central aspect of protein function of great relevance in the post-genomic era. This volume describes a panel of approaches for analyzing protein modules and their interactions, ranging from bioinformatics to physical chemistry, to biochemistry, with an emphasis on the structure-function relationship in protein-protein complexes involved in cellular processes including signal transduction. - Comprehensive overview of different facets of macromolecule interactions - Computational and bioinformatics aspects of analyzing protein modules and their interactions - Emphasis on structure-function relationship in protein-protein complexes involved in cellular processes


Frontiers in Protein Structure, Function, and Dynamics

Frontiers in Protein Structure, Function, and Dynamics

Author: Dev Bukhsh Singh

Publisher: Springer Nature

Published: 2020-07-02

Total Pages: 458

ISBN-13: 9811555303

DOWNLOAD EBOOK

This book discusses a broad range of basic and advanced topics in the field of protein structure, function, folding, flexibility, and dynamics. Starting with a basic introduction to protein purification, estimation, storage, and its effect on the protein structure, function, and dynamics, it also discusses various experimental and computational structure determination approaches; the importance of molecular interactions and water in protein stability, folding and dynamics; kinetic and thermodynamic parameters associated with protein-ligand binding; single molecule techniques and their applications in studying protein folding and aggregation; protein quality control; the role of amino acid sequence in protein aggregation; muscarinic acetylcholine receptors, antimuscarinic drugs, and their clinical significances. Further, the book explains the current understanding on the therapeutic importance of the enzyme dopamine beta hydroxylase; structural dynamics and motions in molecular motors; role of cathepsins in controlling degradation of extracellular matrix during disease states; and the important structure-function relationship of iron-binding proteins, ferritins. Overall, the book is an important guide and a comprehensive resource for understanding protein structure, function, dynamics, and interaction.


What Mad Pursuit

What Mad Pursuit

Author: Francis Crick

Publisher: Basic Books

Published: 2008-08-06

Total Pages: 206

ISBN-13: 0786725842

DOWNLOAD EBOOK

Candid, provocative, and disarming, this is the widely-praised memoir of the co-discoverer of the double helix of DNA.