Structure Computation and Dynamics in Protein NMR

Structure Computation and Dynamics in Protein NMR

Author: N. Rama Krishna

Publisher: Springer Science & Business Media

Published: 2006-05-09

Total Pages: 565

ISBN-13: 0306470845

DOWNLOAD EBOOK

Volume 17 is the second in a special topic series devoted to modern techniques in protein NMR, under the Biological Magnetic Resonance series. Volume 16, with the subtitle Modern Techniques in Protein NMR , is the first in this series. These two volumes present some of the recent, significant advances in the biomolecular NMR field with emphasis on developments during the last five years. We are honored to have brought together in these volume some of the world s foremost experts who have provided broad leadership in advancing this field. Volume 16 contains - vances in two broad categories: I. Large Proteins, Complexes, and Membrane Proteins and II. Pulse Methods. Volume 17 contains major advances in: I. Com- tational Methods and II. Structure and Dynamics. The opening chapter of volume 17 starts with a consideration of some important aspects of modeling from spectroscopic and diffraction data by Wilfred van Gunsteren and his colleagues. The next two chapters deal with combined automated assignments and protein structure determination, an area of intense research in many laboratories since the traditional manual methods are often inadequate or laborious in handling large volumes of NMR data on large proteins. First, Werner Braun and his associates describe their experience with the NOAH/DIAMOD protocol developed in their laboratory.


Biological NMR Spectroscopy

Biological NMR Spectroscopy

Author: John L. Markley

Publisher: Oxford University Press

Published: 1997-01-30

Total Pages: 375

ISBN-13: 0195094689

DOWNLOAD EBOOK

This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.


Structural Biology in Drug Discovery

Structural Biology in Drug Discovery

Author: Jean-Paul Renaud

Publisher: John Wiley & Sons

Published: 2020-01-09

Total Pages: 1437

ISBN-13: 1118900502

DOWNLOAD EBOOK

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins


Fundamentals of Protein NMR Spectroscopy

Fundamentals of Protein NMR Spectroscopy

Author: Gordon S. Rule

Publisher: Springer Science & Business Media

Published: 2006-02-16

Total Pages: 543

ISBN-13: 1402035004

DOWNLOAD EBOOK

NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data processing. End of chapter exercises are included to emphasize important concepts. Fundamentals of Protein NMR Spectroscopy not only offer students a systematic, in-depth, understanding of modern NMR spectroscopy and its application to biomolecular systems, but will also be a useful reference for the experienced investigator.


Protein NMR Spectroscopy

Protein NMR Spectroscopy

Author: John Cavanagh

Publisher: Elsevier

Published: 2010-07-21

Total Pages: 915

ISBN-13: 008047103X

DOWNLOAD EBOOK

Protein NMR Spectroscopy, Second Edition combines a comprehensive theoretical treatment of NMR spectroscopy with an extensive exposition of the experimental techniques applicable to proteins and other biological macromolecules in solution. Beginning with simple theoretical models and experimental techniques, the book develops the complete repertoire of theoretical principles and experimental techniques necessary for understanding and implementing the most sophisticated NMR experiments. Important new techniques and applications of NMR spectroscopy have emerged since the first edition of this extremely successful book was published in 1996. This updated version includes new sections describing measurement and use of residual dipolar coupling constants for structure determination, TROSY and deuterium labeling for application to large macromolecules, and experimental techniques for characterizing conformational dynamics. In addition, the treatments of instrumentation and signal acquisition, field gradients, multidimensional spectroscopy, and structure calculation are updated and enhanced. The book is written as a graduate-level textbook and will be of interest to biochemists, chemists, biophysicists, and structural biologists who utilize NMR spectroscopy or wish to understand the latest developments in this field. - Provides an understanding of the theoretical principles important for biological NMR spectroscopy - Demonstrates how to implement, optimize and troubleshoot modern multi-dimensional NMR experiments - Allows for the capability of designing effective experimental protocols for investigations of protein structures and dynamics - Includes a comprehensive set of example NMR spectra of ubiquitin provides a reference for validation of experimental methods


Protein Structure

Protein Structure

Author: Daniel Chasman

Publisher: CRC Press

Published: 2003-03-18

Total Pages: 534

ISBN-13: 0824748166

DOWNLOAD EBOOK

This text offers in-depth perspectives on every aspect of protein structure identification, assessment, characterization, and utilization, for a clear understanding of the diversity of protein shapes, variations in protein function, and structure-based drug design. The authors cover numerous high-throughput technologies as well as computational methods to study protein structures and residues. A valuable reference, this book reflects current trends in the effort to solve new structures arising from genome initiatives, details methods to detect and identify errors in the prediction of protein structural models, and outlines challenges in the conversion of routine processes into high-throughput platforms.


Computer Simulation of Biomolecular Systems

Computer Simulation of Biomolecular Systems

Author: W.F. van Gunsteren

Publisher: Springer Science & Business Media

Published: 1997-11-30

Total Pages: 664

ISBN-13: 9789072199256

DOWNLOAD EBOOK

This book is the third volume in this highly successful series. Since the first volume in 1989 and the second in 1993, many exciting developments have occurred in the development of simulation techniques and their application to key biological problems such as protein folding, protein structure prediction and structure-based design, and in how, by combining experimental and theoretical approaches, very large biological systems can be studied at the molecular level. This series attempts to capture that progress. Volume 3 includes contributions that highlight developments in methodology which enable longer and more realistic simulations (e.g. multiple time steps and variable reduction techniques), a study of force fields for proteins and new force field development, a novel approach to the description of molecular shape and the use of molecular shape descriptors, the study of condensed phase chemical reactions, the use of electrostatic techniques in the study of protonation, equilibria and flexible docking studies, structure refinement using experimental data (X-ray, NMR, neutron, infrared) and theoretical methods (solvation models, normal mode analysis, MD simulations, MC lattice dynamics, and knowledge-based potentials). There are several chapters that show progress in the development of methodologies for the study of folding processes, binding affinities, and the prediction of ligand-protein complexes. The chapters, contributed by experienced researchers, many of whom are leaders in their field of study, are organised to cover developments in: simulation methodology the treatment of electrostatics protein structure refinement the combined experimental and theoretical approaches to the study of very large biological systems applications and methodology involved in the study of protein folding applications and methodology associated with structure-based design.


X-PLOR

X-PLOR

Author: Axel T. Brünger

Publisher: Yale University Press

Published: 1992-01-01

Total Pages: 404

ISBN-13: 9780300054026

DOWNLOAD EBOOK

X-PLOR is a highly sophisticated computer program that provides an interface between theoretical foundations and experimental data in structural biology, with specific emphasis on X-ray crystallography and nuclear magnetic resonance spectroscopy in solution of large biological macro-molecules. This manual to X-PLOR Version 3.1 presents the theoretical background, syntax, and function of the program and also provides a comprehensive list of references and sample input files with comments. It is intended primarily for researchers and students in the fields of computational chemistry, structural biology, and computational molecular biology.


Modern Techniques in Protein NMR

Modern Techniques in Protein NMR

Author: N. Rama Krishna

Publisher: Springer Science & Business Media

Published: 2006-03-16

Total Pages: 400

ISBN-13: 0306470837

DOWNLOAD EBOOK

Volume 16 marks the beginning of a special topic series devoted to modern techniques in protein NMR, under the Biological Magnetic Resonance series. This volume is being followed by Volume 17 with the subtitle Structure Computation and Dynamics in Protein NMR. Volumes 16 and 17 present some of the recent, significant advances in biomolecular NMR field with emphasis on developments during the last five years. We are honored to have brought together in these volumes some of the world’s foremost experts who have provided broad leadership in advancing this field. Volume 16 contains advances in two broad categories: the first, Large Proteins, Complexes, and Membrane Proteins, and second, Pulse Methods. Volume 17, which will follow covers major advances in Computational Methods, and Structure and Dynamics. In the opening chapter of Volume 16, Marius Clore and Angela Gronenborn give a brief review of NMR strategies including the use of long range restraints in the structure determination of large proteins and protein complexes. In the next two chapters, Lewis Kay and Ron Venters and their collaborators describe state-of-t- art advances in the study of perdeuterated large proteins. They are followed by Stanley Opella and co-workers who present recent developments in the study of membrane proteins. (A related topic dealing with magnetic field induced residual dipolar couplings in proteins will appear in the section on Structure and Dynamics in Volume 17).