Structure and Transport Properties of Epitaxial Oxide Thin Films

Structure and Transport Properties of Epitaxial Oxide Thin Films

Author: Junsoo Shin

Publisher:

Published: 2007

Total Pages: 207

ISBN-13:

DOWNLOAD EBOOK

Epitaxial thin films and heterostructures based on perovskite oxides have attracted significant attention in physics since perovskites exhibit an enormous range of electrical, magnetic, and optical properties, making them exciting systems for studies of the fundamental physical mechanisms of interactions between electron, lattice, and spin degrees of freedom. This dissertation has been focused on ferroelectricity in low-dimensional ferroelectric materials using ultra-thin ferroelectric epitaxial films (BaTiO3) with a metallic electrode (SrRuO3) by studying polarized ordering of the crystal structure and electronic transport through the films. High quality and highly oxidized epitaxial films are a prerequisite for the clear observation of physical properties such as ferroelectricity which depends on a sensitive balance of lattice structure, dynamics, and charge distribution. Measurements in low dimensional, ultra-thin films require a controlled surface status through in-situ characterization. As is demonstrated here, fundamental physical phenomena on surfaces and in ultra-thin films are easily modified due to reactivity in ambient air, even for oxide materials generally considered inert. This study is centered on in-situ low energy electron diffraction and scanning tunneling spectroscopy of BaTiO3 films grown on SrRuO3 electrodes on a SrTiO3 substrate. Results show out-of-plane polarized structure and polarization switching, which provide evidence of ferroelectricity in films down to 4 ML. Surface reconstruction in 1-2 ML thick BaTiO3 films is seriously affected by the interface between BaTiO3 films and SrRuO3 bottom electrode. Our observation in epitaxial BaTiO3 films indicates the existence of ferroelectricity with a lower limit (4 ML) for the minimum thickness than theoretical expectation (6 ML), which results from the difference of film stress, termination on films, and depolarizing screening.


Metal Oxide-Based Thin Film Structures

Metal Oxide-Based Thin Film Structures

Author: Nini Pryds

Publisher: Elsevier

Published: 2017-09-07

Total Pages: 562

ISBN-13: 0081017529

DOWNLOAD EBOOK

Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces. Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In Part III, the emphasis is on ionic and electronic transport at the interfaces of Metal-oxide thin films. Part IV discusses methods for tailoring metal oxide thin film interfaces for specific applications, including microelectronics, communication, optical electronics, catalysis, and energy generation and conservation. This book is an essential resource for anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems and those engaged in research into electronic materials. Introduces the theoretical and experimental aspects of epitaxial growth for the benefit of readers new to the field Explores state-of-the-art analysis techniques and their application to interface properties in order to give a fuller understanding of the relationship between macroscopic properties and atomic-scale manipulation Discusses techniques for tailoring thin film interfaces for specific applications, including information, electronics and energy technologies, making this book essential reading for materials scientists and engineers alike


Epitaxial Oxide Thin Films III: Volume 474

Epitaxial Oxide Thin Films III: Volume 474

Author: Chang-Beom Eom

Publisher: Materials Research Society

Published: 1997-09-10

Total Pages: 0

ISBN-13: 9781558993785

DOWNLOAD EBOOK

As a result of the progress towards, and potential realized in electronic and optical device applications, the interest in epitaxial oxide thin films continue to flourish. The understanding of epitaxial oxide heterostructures has progressed, including magnetic, magnetoresistive, dielectric, ferroelectric and superconducting oxide materials. This book focuses on the fundamental issues of oxide epitaxy, microstructural evolution in epitaxy, and physical properties of epitaxial oxide thin films and how these issues relate to device applications. The book provides a vehicle through which groups of scientists working on a set of diverse phenomena could interact and present findings on very common specific themes involving similar materials. Due to the explosive growth of work in the area of colossal magnetoresistive (CMR) materials, especially in epitaxial form, the book also offers a forum to critically examine the fundamental nature of CMR in epitaxial oxide thin films and the relationship between CMR and defect structure. Other areas of emphasis include: ferroelectric memories, nonlinear optical waveguides, microwave electronics and magnetic oxide thin films.


Crystal Structure,Electronic and Optical Properties of Epitaxial Alkaline Earth Niobate Thin Films

Crystal Structure,Electronic and Optical Properties of Epitaxial Alkaline Earth Niobate Thin Films

Author: Dongyang Wan

Publisher: Springer

Published: 2017-09-18

Total Pages: 133

ISBN-13: 331965912X

DOWNLOAD EBOOK

This impressive thesis offers a comprehensive scientific study of the alkaline earth niobates and describes their nonlinear optical properties for the first time. It explores the crystal structure, electrical properties, optical absorption properties, hot carrier dynamics, nonlinear optical property and strain-induced metal to insulator transition of alkaline earth niobates using advanced experimental techniques. These alkaline earth niobates can have a strong plasmon resonance in the visible range due to their large carrier density, and this unique property gives rise to the emergent phenomenon of photocatalysis and nonlinear optical properties. This series of intrinsic plasmonic materials based on niobates, can be used as a photocatalyst to split water under sunlight, a novel saturable absorber in the high-power ultrashort pulsed laser system, and as a sensor in microelectromechanical systems.


Epitaxial Oxide Thin Films II: Volume 401

Epitaxial Oxide Thin Films II: Volume 401

Author: James S. Speck

Publisher:

Published: 1996-03-29

Total Pages: 588

ISBN-13:

DOWNLOAD EBOOK

Our understanding and control of epitaxial oxide heterostructures has progressed along multiple frontiers including magnetic, dielectric, ferroelectric, and superconducting oxide materials. This has resulted in both independent rediscovery and the successful borrowing of ideas from ceramic science, solid-state physics, and semiconductor epitaxy. A new field of materials science has emerged which aims at the use of the intrinsic properties of various oxide materials in single-crystal thin-film form. Exploiting the potential of these materials, however, will only be possible if many fundamental and engineering questions can be answered. This book represents continued progress toward fulfilling that promise. Technical information on epitaxial oxide thin films from industry, academia and government laboratories is presented. Topics include: dielectrics; ferroelectrics; optics; superconductors; magnetics; magnetoresistance.


Materials Science in Microelectronics II

Materials Science in Microelectronics II

Author: Eugene Machlin

Publisher: Elsevier

Published: 2010-07-07

Total Pages: 268

ISBN-13: 0080460402

DOWNLOAD EBOOK

The subject matter of thin-films – which play a key role in microelectronics – divides naturally into two headings: the processing / structure relationship, and the structure / properties relationship. Part II of 'Materials Science in Microelectronics' focuses on the latter of these relationships, examining the effect of structure on the following: • Electrical properties • Magnetic properties • Optical properties • Mechanical properties • Mass transport properties • Interface and junction properties • Defects and properties Captures the importance of thin films to microelectronic development Examines the cause / effect relationship of structure on thin film properties