Structural Properties of Polylogarithms

Structural Properties of Polylogarithms

Author: Leonard Lewin

Publisher: American Mathematical Soc.

Published: 1991

Total Pages: 432

ISBN-13: 0821816349

DOWNLOAD EBOOK

About ten years ago, the handful of peculiar numerical diogarithmic identities, known since the time of Euler and Landen, gave rise to new discoveries concerning cyclotomic equations and related polylogarithmic ladders. These discoveries were made mostly by the methods of classical analysis, with help from machine computation. About the same time, starting with Bloch's studies on the application of the dilogarithm in algebraic K-theory and algebraic geometry, many important discoveries were made in diverse areas. This book seeks to provide a synthesis of these two streams of thought. In addition to an account of ladders and their association with functional equations, the chapters include applications to volume calculations in Lobatchevsky geometry, relations to partition theory, connections with Clausen's function, new functional equations, and applications to K-theory and other branches of abstract algebra. This rapidly-expanding field is brought up to date with two appendices, and the book concludes with an extensive bibliography of recent publications. About two-thirds of the material is accessible to mathematicians and scientists in many areas, while the remainder requires more specialized background in abstract algebra.


The Lerch zeta-function

The Lerch zeta-function

Author: Antanas Laurincikas

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 192

ISBN-13: 9401764018

DOWNLOAD EBOOK

The Lerch zeta-function is the first monograph on this topic, which is a generalization of the classic Riemann, and Hurwitz zeta-functions. Although analytic results have been presented previously in various monographs on zeta-functions, this is the first book containing both analytic and probability theory of Lerch zeta-functions. The book starts with classical analytical theory (Euler gamma-functions, functional equation, mean square). The majority of the presented results are new: on approximate functional equations and its applications and on zero distribution (zero-free regions, number of nontrivial zeros etc). Special attention is given to limit theorems in the sense of the weak convergence of probability measures for the Lerch zeta-function. From limit theorems in the space of analytic functions the universitality and functional independence is derived. In this respect the book continues the research of the first author presented in the monograph Limit Theorems for the Riemann zeta-function. This book will be useful to researchers and graduate students working in analytic and probabilistic number theory, and can also be used as a textbook for postgraduate students.


CRC Concise Encyclopedia of Mathematics

CRC Concise Encyclopedia of Mathematics

Author: Eric W. Weisstein

Publisher: CRC Press

Published: 2002-12-12

Total Pages: 3253

ISBN-13: 1420035223

DOWNLOAD EBOOK

Upon publication, the first edition of the CRC Concise Encyclopedia of Mathematics received overwhelming accolades for its unparalleled scope, readability, and utility. It soon took its place among the top selling books in the history of Chapman & Hall/CRC, and its popularity continues unabated. Yet also unabated has been the d


Zeta and q-Zeta Functions and Associated Series and Integrals

Zeta and q-Zeta Functions and Associated Series and Integrals

Author: Hari M Srivastava

Publisher: Elsevier

Published: 2011-10-11

Total Pages: 675

ISBN-13: 0123852196

DOWNLOAD EBOOK

Zeta and q-Zeta Functions and Associated Series and Integrals is a thoroughly revised, enlarged and updated version of Series Associated with the Zeta and Related Functions. Many of the chapters and sections of the book have been significantly modified or rewritten, and a new chapter on the theory and applications of the basic (or q-) extensions of various special functions is included. This book will be invaluable because it covers not only detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions, but stimulating historical accounts of a large number of problems and well-classified tables of series and integrals. - Detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions


The Arithmetic and Geometry of Algebraic Cycles

The Arithmetic and Geometry of Algebraic Cycles

Author: B. Brent Gordon

Publisher: Springer Science & Business Media

Published: 2000-02-29

Total Pages: 652

ISBN-13: 9780792361947

DOWNLOAD EBOOK

The subject of algebraic cycles has thrived through its interaction with algebraic K-theory, Hodge theory, arithmetic algebraic geometry, number theory, and topology. These interactions have led to such developments as a description of Chow groups in terms of algebraic K-theory, the arithmetic Abel-Jacobi mapping, progress on the celebrated conjectures of Hodge and Tate, and the conjectures of Bloch and Beilinson. The immense recent progress in algebraic cycles, based on so many interactions with so many other areas of mathematics, has contributed to a considerable degree of inaccessibility, especially for graduate students. Even specialists in one approach to algebraic cycles may not understand other approaches well. This book offers students and specialists alike a broad perspective of algebraic cycles, presented from several viewpoints, including arithmetic, transcendental, topological, motives and K-theory methods. Topics include a discussion of the arithmetic Abel-Jacobi mapping, higher Abel-Jacobi regulator maps, polylogarithms and L-series, candidate Bloch-Beilinson filtrations, applications of Chern-Simons invariants to algebraic cycles via the study of algebraic vector bundles with algebraic connection, motivic cohomology, Chow groups of singular varieties, and recent progress on the Hodge and Tate conjectures for Abelian varieties.


First European Congress of Mathematics Paris, July 6–10, 1992

First European Congress of Mathematics Paris, July 6–10, 1992

Author: Anthony Joseph

Publisher: Nelson Thornes

Published: 1994-07

Total Pages: 548

ISBN-13: 9783764327996

DOWNLOAD EBOOK

Table of Contents: D. Duffie: Martingales, Arbitrage, and Portfolio Choice • J. Fröhlich: Mathematical Aspects of the Quantum Hall Effect • M. Giaquinta: Analytic and Geometric Aspects of Variational Problems for Vector Valued Mappings • U. Hamenstädt: Harmonic Measures for Leafwise Elliptic Operators Along Foliations • M. Kontsevich: Feynman Diagrams and Low-Dimensional Topology • S.B. Kuksin: KAM-Theory for Partial Differential Equations • M. Laczkovich: Paradoxical Decompositions: A Survey of Recent Results • J.-F. Le Gall: A Path-Valued Markov Process and its Connections with Partial Differential Equations • I. Madsen: The Cyclotomic Trace in Algebraic K-Theory • A.S. Merkurjev: Algebraic K-Theory and Galois Cohomology • J. Nekovár: Values of L-Functions and p-Adic Cohomology • Y.A. Neretin: Mantles, Trains and Representations of Infinite Dimensional Groups • M.A. Nowak: The Evolutionary Dynamics of HIV Infections • R. Piene: On the Enumeration of Algebraic Curves - from Circles to Instantons • A. Quarteroni: Mathematical Aspects of Domain Decomposition Methods • A. Schrijver: Paths in Graphs and Curves on Surfaces • B. Silverman: Function Estimation and Functional Data Analysis • V. Strassen: Algebra and Complexity • P. Tukia: Generalizations of Fuchsian and Kleinian Groups • C. Viterbo: Properties of Embedded Lagrange Manifolds • D. Voiculescu: Alternative Entropies in Operator Algebras • M. Wodzicki : Algebraic K-Theory and Functional Analysis • D. Zagier: Values of Zeta Functions and Their Applications


Non-abelian Fundamental Groups and Iwasawa Theory

Non-abelian Fundamental Groups and Iwasawa Theory

Author: John Coates

Publisher: Cambridge University Press

Published: 2011-12-15

Total Pages: 321

ISBN-13: 1139505653

DOWNLOAD EBOOK

This book describes the interaction between several key aspects of Galois theory based on Iwasawa theory, fundamental groups and automorphic forms. These ideas encompass a large portion of mainstream number theory and ramifications that are of interest to graduate students and researchers in number theory, algebraic geometry, topology and physics.


Vector Partitions, Visible Points and Ramanujan Functions

Vector Partitions, Visible Points and Ramanujan Functions

Author: Geoffrey B. Campbell

Publisher: CRC Press

Published: 2024-05-29

Total Pages: 567

ISBN-13: 1040026443

DOWNLOAD EBOOK

Vector Partitions, Visible Points and Ramanujan Functions offers a novel theory of Vector Partitions, though very much grounded in the long-established work of others, that could be developed as an extension to the existing theory of Integer Partitions. The book is suitable for graduate students in physics, applied mathematics, number theory and computational mathematics. It takes the reader up to research level, presenting new results alongside known classical results from integer partitions and areas of vector and multipartite partition theory. It also sets forth new directions for research for the more advanced reader. Above all, the intention of the book is to bring new inspiration to others who study mathematics and related areas. It is hoped that some new ideas will be launched to add value and insight into many of the classical and new theories surrounding partitions. The book is an appreciation of the many gifted authors of research into partitions over the past century and before, in the hope that more may come of this for future generations. Features Provides a step-by-step guide through the known literature on Integer and Vector Partitions, and a focus on the not so well-known Visible Point Vector identities Serves as a reference for graduate students and researchers in physics, applied mathematics, number theory and computational mathematics Offers a variety of practical examples as well as sets of exercises suitable for students and researchers Geoffrey B. Campbell completed his PhD at Australian National University in 1998 under the esteemed physicist Professor Rodney Baxter. His affiliation with the Australian National University Mathematical Sciences Institute has continued for over 30 years. Within that time frame, Geoffrey also served eight years as an Honorary Research Fellow at LaTrobe University Mathematics and Statistics Department in Melbourne. Currently he writes ongoing articles for the Australian Mathematical Society Gazette. Within the international scope, Geoffrey currently serves as a PhD external committee member for a mathematics graduate student at Washington State University in America. Geoffrey has built a career within Australian Commonwealth and State government departments, including as an Advisor at the Department of Prime Minister and Cabinet; as Analyst Researcher for a Royal Commission. Geoffrey specializes in complex data, machine learning including data analytics. He is also a published poet in Australian anthologies and literary magazines.


Congruences for L-Functions

Congruences for L-Functions

Author: J. Urbanowicz

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 266

ISBN-13: 9401595429

DOWNLOAD EBOOK

In [Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved previously by other authors using various means. The Hardy-Williams idea was as follows. Let d be the discriminant of a quadratic field. Suppose that d is odd and let d = PIP2· . . Pn be its unique decomposition into prime discriminants. Then, for any positive integer k coprime with d, the congruence holds trivially as each Legendre-Jacobi-Kronecker symbol (~) has the value + 1 or -1. Expanding this product gives ~ eld e:=l (mod4) where e runs through the positive and negative divisors of d and v (e) denotes the number of distinct prime factors of e. Summing this congruence for o


Special Functions

Special Functions

Author: George E. Andrews

Publisher: Cambridge University Press

Published: 1999

Total Pages: 684

ISBN-13: 9780521789882

DOWNLOAD EBOOK

An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.