Structural Chemistry of Silicates

Structural Chemistry of Silicates

Author: F. Liebau

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 484

ISBN-13: 3642500765

DOWNLOAD EBOOK

As natural minerals, silica and silicates constitute by far the largest part of the earth's crust and mantle. They are equally important as raw materials and as mass produced items. For this reason they have been the subject of scientific research by geoscientists as well as by applied scientists in cement, ceramic, glass, and other industries. Moreover, intensive fun damental research on silicates has been carried out for many years because silicates are, due to their enormous variability, ideally suited for the study of general chemical and crystallographic principles. Several excellent books on mineralogy and cement, ceramics, glass, etc. give brief, usually descriptive synopses of the structure of silicates, but do not contain detailed discussions of their structural chemistry. A number of monographs on special groups of silicates, such as the micas and clay min erals, amphiboles, feldspars, and zeolites have been published which con tain more crystal chemical information. However, no modern text has been published which is devoted to the structural chemistry of silicates as a whole. Within the last 2 decades experimental and theoretical methods have been so much improved to the extent that not only have a large number of silicate structures been accurately determined, but also a better under standing has been obtained of the correlation between the chemical composition of a silicate and its structure. Therefore, the time has been reached when a modern review of the structural chemistry of silicates has become necessary.


Structural Chemistry of Silicates

Structural Chemistry of Silicates

Author: F. Liebau

Publisher: Springer

Published: 1985-05

Total Pages: 372

ISBN-13:

DOWNLOAD EBOOK

As natural minerals, silica and silicates constitute by far the largest part of the earth's crust and mantle. They are equally important as raw materials and as mass produced items. For this reason they have been the subject of scientific research by geoscientists as well as by applied scientists in cement, ceramic, glass, and other industries. Moreover, intensive fun damental research on silicates has been carried out for many years because silicates are, due to their enormous variability, ideally suited for the study of general chemical and crystallographic principles. Several excellent books on mineralogy and cement, ceramics, glass, etc. give brief, usually descriptive synopses of the structure of silicates, but do not contain detailed discussions of their structural chemistry. A number of monographs on special groups of silicates, such as the micas and clay min erals, amphiboles, feldspars, and zeolites have been published which con tain more crystal chemical information. However, no modern text has been published which is devoted to the structural chemistry of silicates as a whole. Within the last 2 decades experimental and theoretical methods have been so much improved to the extent that not only have a large number of silicate structures been accurately determined, but also a better under standing has been obtained of the correlation between the chemical composition of a silicate and its structure. Therefore, the time has been reached when a modern review of the structural chemistry of silicates has become necessary.


Structural Chemistry of Inorganic Actinide Compounds

Structural Chemistry of Inorganic Actinide Compounds

Author: Sergey Krivovichev

Publisher: Elsevier

Published: 2006-12-08

Total Pages: 505

ISBN-13: 0080467911

DOWNLOAD EBOOK

Structural Chemistry of Inorganic Actinide Compounds is a collection of 13 reviews on structural and coordination chemistry of actinide compounds. Within the last decade, these compounds have attracted considerable attention because of their importance for radioactive waste management, catalysis, ion-exchange and absorption applications, etc. Synthetic and natural actinide compounds are also of great environmental concern as they form as a result of alteration of spent nuclear fuel and radioactive waste under Earth surface conditions, during burn-up of nuclear fuel in reactors, represent oxidation products of uranium miles and mine tailings, etc. The actinide compounds are also of considerable interest to material scientists due to the unique electronic properties of actinides that give rise to interesting physical properties controlled by the structural architecture of respective compounds. The book provides both general overview and review of recent developments in the field, including such emergent topics as nanomaterials and nanoparticles and their relevance to the transfer of actinides under environmental conditions.* Covers over 2,000 actinide compounds including materials, minerals and coordination polymers* Summarizes recent achievements in the field* Some chapters reveal (secret) advances made by the Soviet Union during the 'Cold war'


Structure and Chemistry of Crystalline Solids

Structure and Chemistry of Crystalline Solids

Author: Bodie Douglas

Publisher: Springer Science & Business Media

Published: 2007-03-20

Total Pages: 356

ISBN-13: 0387366873

DOWNLOAD EBOOK

Understandable by anyone concerned with crystals or solid state properties dependent on structure Presents a general system using simple notation to reveal similarities and differences among crystal structures More than 300 selected and prepared figures illustrate structures found in thousands of compounds


Fundamentals of Structural Chemistry

Fundamentals of Structural Chemistry

Author: Gong-du Zhou

Publisher: World Scientific

Published: 1993

Total Pages: 500

ISBN-13: 9789810213350

DOWNLOAD EBOOK

This book focuses on two main topics in fundamental structural chemistry: the properties of chemical bonding derived from the behavior of the microscopic particles and their wave functions, and the three-dimensional molecular and crystal structures. The principle that ?structure determines properties and properties reflect structures? is clearly demonstrated. This book emphasizes practical examples linking structure with properties and applications which provide invaluable insight for students, thus stimulating their mind to deal with problems in the topics concerned.


Introduction to Structural Chemistry

Introduction to Structural Chemistry

Author: Stepan S. Batsanov

Publisher: Springer Science & Business Media

Published: 2012-11-29

Total Pages: 548

ISBN-13: 9400747713

DOWNLOAD EBOOK

A concise description of models and quantitative parameters in structural chemistry and their interrelations, with 280 tables and >3000 references giving the most up-to-date experimental data on energy characteristics of atoms, molecules and crystals (ionisation potentials, electron affinities, bond energies, heats of phase transitions, band and lattice energies), optical properties (refractive index, polarisability), spectroscopic characteristics and geometrical parameters (bond distances and angles, coordination numbers) of substances in gaseous, liquid and solid states, in glasses and melts, for various thermodynamic conditions. Systems of metallic, covalent, ionic and van der Waals radii, effective atomic charges and other empirical and semi-empirical models are critically revised. Special attention is given to new and growing areas: structural studies of solids under high pressures and van der Waals molecules in gases. The book is addressed to researchers, academics, postgraduates and advanced-course students in crystallography, materials science, physical chemistry of solids.


Chemistry of Silica and Zeolite-Based Materials

Chemistry of Silica and Zeolite-Based Materials

Author: Abderrazzak Douhal

Publisher: Elsevier

Published: 2019-07-04

Total Pages: 465

ISBN-13: 0128178140

DOWNLOAD EBOOK

Chemistry of Silica and Zeolite-Based Materials covers a wide range of topics related to silica-based materials from design and synthesis to applications in different fields of science and technology. Since silica is transparent and inert to the light, it is a very attractive host material for constructing artificial photosynthesis systems. As an earth-abundant oxide, silica is an ideal and basic material for application of various oxides, and the science and technology of silica-based materials are fundamentally important for understanding other oxide-based materials. The book examines nanosolvation and confined molecules in silica hosts, catalysis and photocatalysis, photonics, photosensors, photovoltaics, energy, environmental sciences, drug delivery, and health. Written by a highly experienced and internationally renowned team from around the world, Chemistry of Silica and Zeolite-Based Materials is ideal for chemists, materials scientists, chemical engineers, physicists, biologists, biomedical sciences, environmental scientists, toxicologists, and pharma scientists. --- "The enormous versatility of silica for building a large variety of materials with unique properties has been very well illustrated in this book.... The reader will be exposed to numerous potential applications of these materials – from photocatalytic, optical and electronic applications, to chemical reactivity in confined spaces and biological applications. This book is of clear interest not only to PhD students and postdocs, but also to researchers in this field seeking an understanding of the possible applications of meso and microporous silica-derived materials." - Professor Avelino Corma, Institute of Chemical Technology (ITQ-CSIC) and Polytechnical University of Valencia, Spain - Discusses the most important advances in various fields using silica materials, including nanosolvation and confined molecules in silica hosts, catalysis and photocatalysis, and other topics - Written by a global team of experts from a variety of science and technology disciplines - Ideal resource for chemists, materials scientists, and chemical engineers working with oxide-based materials


Modern Perspectives in Inorganic Crystal Chemistry

Modern Perspectives in Inorganic Crystal Chemistry

Author: Erwin Parthé

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 283

ISBN-13: 9401127263

DOWNLOAD EBOOK

The study of crystal structures has had an ever increasing impact on many fields of science such as physics, chemistry, biology, materials science, medicine, pharmacy, metallurgy, mineralogy and geology. Particularly, with the advent of direct methods of structure determination, the data on crystal structures are accumulating at an unbelievable pace and it becomes more and more difficult to oversee this wealth of data. A crude rationalization of the structures of organic compounds and the atom coordinations can be made with the well-known Kekule model, however, no such generally applicable model exists for the structures of inorganiC and particularly intermetallic compounds. There is a need to rationalize the inorganic crystal structures, to find better ways of describing them, of denoting the geometrical relationships between them, of elucidating the electronic factors and of explaining the bonding between the atoms with the aim of not only having a better understanding of the known structures, but also of predicting structural features of new compounds.


Layer Charge Characteristics of 2:1 Silicate Clay Minerals

Layer Charge Characteristics of 2:1 Silicate Clay Minerals

Author: Stephen A. Boyd

Publisher:

Published: 1994

Total Pages: 156

ISBN-13:

DOWNLOAD EBOOK

Layer charge determination by Alkylammonium Ions; Role of layer charge Role of layer charge in organic contaminant sorption by organo-clays; Evaluation of structural formulae and Alkylammonium methods of determining layer charge; Problems associated with layer charge characterization of 2:1 phyllosilicates; The movement of neutral particles in charged media.


Structure and Properties of Silicate Melts

Structure and Properties of Silicate Melts

Author: Bjorn O. Mysen

Publisher: Elsevier Publishing Company

Published: 1988

Total Pages: 376

ISBN-13:

DOWNLOAD EBOOK

Characterization of the relationships between structure and properties of materials is based on the fundamental principle that the structure of the material be determined first, followed by assessments of which structural properties may govern their properties as a function of composition, pressure, temperature and other variables. Whereas this methodology has been successfully applied to further our understanding of crystalline materials, studies of silicate melt structure are often conducted on a somewhat different basis. Rather than from direct structural determination, structure models have been developed from assumed relationships between a specific melt property and its structure. As a result, a multitude of models has evolved - many of which are mutually exclusive. The overall scope of this book is to address properties and processes of magmatic systems from the vantage point of melt structure. To this end available data in chemically increasingly complex systems are reviewed and discussed with the ultimate goal being integration of the simple system data into a model that describes complex systems such as natural magmatic liquids. Thus the book evolves from the simplest possible system, SiO 2 , to complex systems such as natural magmatic liquids. From a petrologic point of view, sufficient data have been obtained so that a general framework of the structure of magmatic liquids is in place. This framework is based on the same principles as those of crystal chemistry, modulated by the absence of long range order in amorphous material, and systematic relationships between structure and properties can be discerned at least at atmospheric pressure.