Structural Characterization Techniques

Structural Characterization Techniques

Author: Lorenzo Malavasi

Publisher: CRC Press

Published: 2016-10-14

Total Pages: 356

ISBN-13: 1315341212

DOWNLOAD EBOOK

This book presents state-of-the-art contributions related to advanced structural characterization techniques in the field of clean energy materials with particular emphasis on solid oxide fuel cells and hydrogen storage materials. It describes several diffraction and spectroscopic techniques for the investigation of both average and local structures with several examples of the most recent materials for clean energy applications. It is the first authoritative collection of contributions on the importance of the application of the most advanced structural techniques to shed light on the properties and mechanisms of materials currently investigated for the use in alternative energy devices. The book provides key techniques for ex situ and in situ investigation of clean energy materials and, hence, is an essential guide for researchers working on the structural analysis of advanced materials.


Materials Characterization Techniques

Materials Characterization Techniques

Author: Sam Zhang

Publisher: CRC Press

Published: 2008-12-22

Total Pages: 344

ISBN-13: 1420042955

DOWNLOAD EBOOK

Experts must be able to analyze and distinguish all materials, or combinations of materials, in use today-whether they be metals, ceramics, polymers, semiconductors, or composites. To understand a material's structure, how that structure determines its properties, and how that material will subsequently work in technological applications, researche


Fundamentals of Powder Diffraction and Structural Characterization of Materials, Second Edition

Fundamentals of Powder Diffraction and Structural Characterization of Materials, Second Edition

Author: Vitalij Pecharsky

Publisher: Springer Science & Business Media

Published: 2008-11-24

Total Pages: 751

ISBN-13: 0387095799

DOWNLOAD EBOOK

A little over ?ve years have passed since the ?rst edition of this book appeared in print. Seems like an instant but also eternity, especially considering numerous developments in the hardware and software that have made it from the laboratory test beds into the real world of powder diffraction. This prompted a revision, which had to be beyond cosmetic limits. The book was, and remains focused on standard laboratory powder diffractometry. It is still meant to be used as a text for teaching students about the capabilities and limitations of the powder diffraction method. We also hope that it goes beyond a simple text, and therefore, is useful as a reference to practitioners of the technique. The original book had seven long chapters that may have made its use as a text - convenient. So the second edition is broken down into 25 shorter chapters. The ?rst ?fteen are concerned with the fundamentals of powder diffraction, which makes it much more logical, considering a typical 16-week long semester. The last ten ch- ters are concerned with practical examples of structure solution and re?nement, which were preserved from the ?rst edition and expanded by another example – R solving the crystal structure of Tylenol .


Nanocharacterization Techniques

Nanocharacterization Techniques

Author: Osvaldo de Oliveira Jr

Publisher: William Andrew

Published: 2017-03-18

Total Pages: 224

ISBN-13: 0323497799

DOWNLOAD EBOOK

Nanocharacterization Techniques covers the main characterization techniques used in nanomaterials and nanostructures. The chapters focus on the fundamental aspects of characterization techniques and their distinctive approaches. Significant advances that have taken place over recent years in refining techniques are covered, and the mathematical foundations needed to use the techniques are also explained in detail. This book is an important reference for materials scientists and engineers looking for a through analysis of nanocharacterization techniques in order to establish which is best for their needs. - Includes a detailed analysis of different nanocharacterization techniques, allowing readers to explore which one is best for their particular needs - Provides examples of how each characterization technique has been used, giving readers a greater understanding of how each technique can be profitably used - Covers the mathematical background needed to utilize each of these techniques to their best effect, meaning that readers can gain a full understanding of the theoretical principles behind each technique covered - Serves as an important, go-to reference for materials scientists and engineers


Microstructural Characterization of Materials

Microstructural Characterization of Materials

Author: David Brandon

Publisher: John Wiley & Sons

Published: 2013-03-21

Total Pages: 517

ISBN-13: 1118681487

DOWNLOAD EBOOK

Microstructural characterization is usually achieved by allowing some form of probe to interact with a carefully prepared specimen. The most commonly used probes are visible light, X-ray radiation, a high-energy electron beam, or a sharp, flexible needle. These four types of probe form the basis for optical microscopy, X-ray diffraction, electron microscopy, and scanning probe microscopy. Microstructural Characterization of Materials, 2nd Edition is an introduction to the expertise involved in assessing the microstructure of engineering materials and to the experimental methods used for this purpose. Similar to the first edition, this 2nd edition explores the methodology of materials characterization under the three headings of crystal structure, microstructural morphology, and microanalysis. The principal methods of characterization, including diffraction analysis, optical microscopy, electron microscopy, and chemical microanalytical techniques are treated both qualitatively and quantitatively. An additional chapter has been added to the new edition to cover surface probe microscopy, and there are new sections on digital image recording and analysis, orientation imaging microscopy, focused ion-beam instruments, atom-probe microscopy, and 3-D image reconstruction. As well as being fully updated, this second edition also includes revised and expanded examples and exercises, with a solutions manual available at http://develop.wiley.co.uk/microstructural2e/ Microstructural Characterization of Materials, 2nd Edition will appeal to senior undergraduate and graduate students of material science, materials engineering, and materials chemistry, as well as to qualified engineers and more advanced researchers, who will find the book a useful and comprehensive general reference source.


Graphene Oxide

Graphene Oxide

Author: Ayrat M. Dimiev

Publisher: John Wiley & Sons

Published: 2016-11-14

Total Pages: 469

ISBN-13: 1119069408

DOWNLOAD EBOOK

Due to its unique properties, graphene oxide has become one of the most studied materials of the last decade and a great variety of applications have been reported in areas such as sensors, catalysis and biomedical applications. This comprehensive volume systematically describes the fundamental aspects and applications of graphene oxide. The book is designed as an introduction to the topic, so each chapter begins with a discussion on fundamental concepts, then proceeds to review and summarize recent advances in the field. Divided into two parts, the first part covers fundamental aspects of graphene oxide and includes chapters on formation and chemical structure, characterization methods, reduction methods, rheology and optical properties of graphene oxide solutions. Part Two covers numerous graphene oxide applications including field effect transistors, transparent conductive films, sensors, energy harvesting and storage, membranes, composite materials, catalysis and biomedical applications. In each case the differences and advantages of graphene oxide over its non-oxidised counterpart are discussed. The book concludes with a chapter on the challenges of industrial-scale graphene oxide production. Graphene Oxide: Fundamentals and Applications is a valuable reference for academic researchers, and industry scientists interested in graphene oxide, graphene and other carbon materials.


Handbook of Materials Characterization

Handbook of Materials Characterization

Author: Surender Kumar Sharma

Publisher: Springer

Published: 2018-09-18

Total Pages: 612

ISBN-13: 3319929550

DOWNLOAD EBOOK

This book focuses on the widely used experimental techniques available for the structural, morphological, and spectroscopic characterization of materials. Recent developments in a wide range of experimental techniques and their application to the quantification of materials properties are an essential side of this book. Moreover, it provides concise but thorough coverage of the practical and theoretical aspects of the analytical techniques used to characterize a wide variety of functional nanomaterials. The book provides an overview of widely used characterization techniques for a broad audience: from beginners and graduate students, to advanced specialists in both academia and industry.


Characterization of Semiconductor Heterostructures and Nanostructures

Characterization of Semiconductor Heterostructures and Nanostructures

Author: Giovanni Agostini

Publisher: Elsevier

Published: 2011-08-11

Total Pages: 501

ISBN-13: 0080558151

DOWNLOAD EBOOK

In the last couple of decades, high-performance electronic and optoelectronic devices based on semiconductor heterostructures have been required to obtain increasingly strict and well-defined performances, needing a detailed control, at the atomic level, of the structural composition of the buried interfaces. This goal has been achieved by an improvement of the epitaxial growth techniques and by the parallel use of increasingly sophisticated characterization techniques and of refined theoretical models based on ab initio approaches. This book deals with description of both characterization techniques and theoretical models needed to understand and predict the structural and electronic properties of semiconductor heterostructures and nanostructures. - Comprehensive collection of the most powerful characterization techniques for semiconductor heterostructures and nanostructures - Most of the chapters are authored by scientists that are among the top 10 worldwide in publication ranking of the specific field - Each chapter starts with a didactic introduction on the technique - The second part of each chapter deals with a selection of top examples highlighting the power of the specific technique to analyze the properties of semiconductors


Fundamentals, Properties, and Applications of Polymer Nanocomposites

Fundamentals, Properties, and Applications of Polymer Nanocomposites

Author: Joseph H. Koo

Publisher: Cambridge University Press

Published: 2016-10-31

Total Pages: 719

ISBN-13: 1316094413

DOWNLOAD EBOOK

This book is focused primarily on polymer nanocomposites, based on the author's research experience as well as open literature. The environmental health and safety aspects of nanomaterials and polymer nanocomposites, risk assessment and safety standards, and fire toxicity of polymer nanocomposites, are studied. In the final chapter, a brief overview of opportunities, trends, and challenges of polymer nanocomposites are included. Throughout the book, the theme is developed that polymer nanocomposites are a whole family of polymeric materials whose properties are capable of being tailored to meet specific applications. This volume serves as a general introduction to students and researchers just entering the field and to scholars from other subfields seeking information.


Fundamentals of Solid State Engineering

Fundamentals of Solid State Engineering

Author: Manijeh Razeghi

Publisher: Springer Science & Business Media

Published: 2006-06-12

Total Pages: 894

ISBN-13: 0387287515

DOWNLOAD EBOOK

Provides a multidisciplinary introduction to quantum mechanics, solid state physics, advanced devices, and fabrication Covers wide range of topics in the same style and in the same notation Most up to date developments in semiconductor physics and nano-engineering Mathematical derivations are carried through in detail with emphasis on clarity Timely application areas such as biophotonics , bioelectronics