Nanofabrication

Nanofabrication

Author: Yoshitake Masuda

Publisher: BoD – Books on Demand

Published: 2011-12-22

Total Pages: 368

ISBN-13: 9533079126

DOWNLOAD EBOOK

We face many challenges in the 21st century, such as sustainably meeting the world's growing demand for energy and consumer goods. I believe that new developments in science and technology will help solve many of these problems. Nanofabrication is one of the keys to the development of novel materials, devices and systems. Precise control of nanomaterials, nanostructures, nanodevices and their performances is essential for future innovations in technology. The book "Nanofabrication" provides the latest research developments in nanofabrication of organic and inorganic materials, biomaterials and hybrid materials. I hope that "Nanofabrication" will contribute to creating a brighter future for the next generation.


Silicide Technology for Integrated Circuits

Silicide Technology for Integrated Circuits

Author: Institution of Electrical Engineers

Publisher: IET

Published: 2004-12-21

Total Pages: 302

ISBN-13: 9780863413520

DOWNLOAD EBOOK

This is the first book to provide guidance on the development and application of metal silicide technology as it emerges from the scientific to the prototype and manufacturing stages. Other key topics covered are fundamentals, present and future silicide technology for Si-based devices, and characterisation methods. Suitable for engineers and students in microelectronics.


Comprehensive Semiconductor Science and Technology

Comprehensive Semiconductor Science and Technology

Author:

Publisher: Newnes

Published: 2011-01-28

Total Pages: 3572

ISBN-13: 0080932282

DOWNLOAD EBOOK

Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology, Six Volume Set captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts


Small Scale Structures

Small Scale Structures

Author: N.F. de Rooij

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 559

ISBN-13: 0444596305

DOWNLOAD EBOOK

This book contains the proceedings of 3 symposia dealing with various aspects of small scale structures. Symposium A deals with the development of new materials, including ceramics, polymers, metals, etc., their microstructuring as well as their potential for application in microsystems. All kinds of microsystems are considered, e.g. mechanical, magnetic, optical, chemical, biochemical and issues related to assembly and packaging were also covered.Symposium B deals with four topics: synthesis and preparation of nanostructured ceramics and composites with well-controlled geometric order and chemical composition; coupling of these structures to transducers for current and future chemical and biochemical devices based upon microoptics, microelectronics, microionics, microelectrodes or molecular cages; planar thin film structures and the control of covalent thin film/transducer couplings, the control of selective, stable and sensitive recognition centers at the surface, at grain boundaries or in the bulk of selected nanostructured materials with extremely narrow particle size distributions; analysis of these structures and sensor functions by means of techniques utilizing photons, electrons, ions, or atomic particle beam probes.Symposium E examines the structure-property relationships in thin films and multilayers, from the point of view of both fundamental studies and practical applications.