Strichartz Estimates for Schrödinger Equations with Variable Coefficients

Strichartz Estimates for Schrödinger Equations with Variable Coefficients

Author: Luc Robbiano

Publisher:

Published: 2005

Total Pages: 222

ISBN-13:

DOWNLOAD EBOOK

The authors prove the (local in time) Stricharz estimates (for the full range of parameters given by the scaling unless the end point) for asymptotically flat and non trapping perturbations of the flat Laplacian in $\mathbb {R} ^n$, $n\geq 2$. The main point of the proof, namely the dispersion estimate, is obtained in constructing a parametrix. The main tool for this construction is the use of the Fourier-Bros-Iagolnitzer (FBI) transform.


Harmonic Analysis and Partial Differential Equations

Harmonic Analysis and Partial Differential Equations

Author: Michael Ruzhansky

Publisher: Springer Nature

Published: 2023-03-06

Total Pages: 241

ISBN-13: 3031243110

DOWNLOAD EBOOK

This book collects papers related to the session “Harmonic Analysis and Partial Differential Equations” held at the 13th International ISAAC Congress in Ghent and provides an overview on recent trends and advances in the interplay between harmonic analysis and partial differential equations. The book can serve as useful source of information for mathematicians, scientists and engineers. The volume contains contributions of authors from a variety of countries on a wide range of active research areas covering different aspects of partial differential equations interacting with harmonic analysis and provides a state-of-the-art overview over ongoing research in the field. It shows original research in full detail allowing researchers as well as students to grasp new aspects and broaden their understanding of the area.


Phase Space Analysis of Partial Differential Equations

Phase Space Analysis of Partial Differential Equations

Author: Antonio Bove

Publisher: Springer Science & Business Media

Published: 2007-12-28

Total Pages: 336

ISBN-13: 0817645217

DOWNLOAD EBOOK

Covers phase space analysis methods, including microlocal analysis, and their applications to physics Treats the linear and nonnlinear aspects of the theory of PDEs Original articles are self-contained with full proofs; survey articles give a quick and direct introduction to selected topics evolving at a fast pace Excellent reference and resource for grad students and researchers in PDEs and related fields


Strichartz Estimates and the Cauchy Problem for the Gravity Water Waves Equations

Strichartz Estimates and the Cauchy Problem for the Gravity Water Waves Equations

Author: T. Alazard

Publisher: American Mathematical Soc.

Published: 2019-01-08

Total Pages: 120

ISBN-13: 147043203X

DOWNLOAD EBOOK

This memoir is devoted to the proof of a well-posedness result for the gravity water waves equations, in arbitrary dimension and in fluid domains with general bottoms, when the initial velocity field is not necessarily Lipschitz. Moreover, for two-dimensional waves, the authors consider solutions such that the curvature of the initial free surface does not belong to L2. The proof is entirely based on the Eulerian formulation of the water waves equations, using microlocal analysis to obtain sharp Sobolev and Hölder estimates. The authors first prove tame estimates in Sobolev spaces depending linearly on Hölder norms and then use the dispersive properties of the water-waves system, namely Strichartz estimates, to control these Hölder norms.


Introduction to Nonlinear Dispersive Equations

Introduction to Nonlinear Dispersive Equations

Author: Felipe Linares

Publisher: Springer

Published: 2014-12-15

Total Pages: 308

ISBN-13: 1493921819

DOWNLOAD EBOOK

This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introduction to Nonlinear Dispersive Equations builds upon the success of the first edition by the addition of updated material on the main topics, an expanded bibliography, and new exercises. Assuming only basic knowledge of complex analysis and integration theory, this book will enable graduate students and researchers to enter this actively developing field.


XVIIth International Congress on Mathematical Physics

XVIIth International Congress on Mathematical Physics

Author: Arne Jensen

Publisher: World Scientific

Published: 2014

Total Pages: 743

ISBN-13: 9814449245

DOWNLOAD EBOOK

This is an in-depth study of not just about Tan Kah-kee, but also the making of a legend through his deeds, self-sacrifices, fortitude and foresight. This revised edition sheds new light on his political agonies in Mao's China over campaigns against capitalists and intellectuals.


Fourier Analysis and Nonlinear Partial Differential Equations

Fourier Analysis and Nonlinear Partial Differential Equations

Author: Hajer Bahouri

Publisher: Springer Science & Business Media

Published: 2011-01-03

Total Pages: 530

ISBN-13: 3642168302

DOWNLOAD EBOOK

In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.


Mathematics of Complexity and Dynamical Systems

Mathematics of Complexity and Dynamical Systems

Author: Robert A. Meyers

Publisher: Springer Science & Business Media

Published: 2011-10-05

Total Pages: 1885

ISBN-13: 1461418054

DOWNLOAD EBOOK

Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.


Classical and Multilinear Harmonic Analysis: Volume 1

Classical and Multilinear Harmonic Analysis: Volume 1

Author: Camil Muscalu

Publisher: Cambridge University Press

Published: 2013-01-31

Total Pages: 389

ISBN-13: 1139619160

DOWNLOAD EBOOK

This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.


Author:

Publisher: Springer Nature

Published:

Total Pages: 439

ISBN-13: 3031709098

DOWNLOAD EBOOK