Selected papers presented at the International Symposium on Agroclimatology and Sustainable Agriculture in Stressed Environments held at Hyderabad in India during 15-20 February 1993.
Selected papers presented at the International Symposium on Agroclimatology and Sustainable Agriculture in Stressed Environments held at Hyderabad in India during 15-20 February 1993.
World’s population is projected to reach 9.7 billion in 2050 and 11.2 billion in 2100. To meet the food demands of the exponentially increasing population, a massive food production is necessary. Agricultural production on land and aquatic systems pose negative impacts on the earth’s ecosystems. Combined effects of climate change, land degradation, cropland losses, water scarcity and species infestations are major causes for loss of agricultural yields up to 25%. Therefore, the world needs a paradigm shift in agriculture development for sustainable food production and security through green revolution and eco-friendly approaches. Hence, agriculture practices must be sustained by the ability of farm land to produce food to satisfy human needs indefinitely as well as having sustainable impacts on the broader environment. The real agricultural challenges of the future as well as for today differ according to their geopolitical and socioeconomic contexts. Therefore, sustainable agriculture must be inclusive and have adaptability and flexibility over time to respond to demands for food production. Considering all these points, this book has been prepared to address and insights to generate awareness of food security and focuses on perspectives of sustainable food production and security towards human society. The book facilitates to describes the classical and recent advancement of technologies and strategies by sustainable way through plant and animal origin including, breeding, pest management, tissue culture, transgenic techniques, bio and phytoremediation, environmental stress and resistance, plant growth enhancing microbes, bio-fertilizer and integrated approaches of food nutrition. Chapters provide a new dimension to discuss the issues, challenges and strategies of agricultural sustainability in a comprehensive manner. It aims at educating the students, advanced and budding researchers to develop novel approaches for sustainability with environmentally sound practices.
For nearly a century, scientific advances have fueled progress in U.S. agriculture to enable American producers to deliver safe and abundant food domestically and provide a trade surplus in bulk and high-value agricultural commodities and foods. Today, the U.S. food and agricultural enterprise faces formidable challenges that will test its long-term sustainability, competitiveness, and resilience. On its current path, future productivity in the U.S. agricultural system is likely to come with trade-offs. The success of agriculture is tied to natural systems, and these systems are showing signs of stress, even more so with the change in climate. More than a third of the food produced is unconsumed, an unacceptable loss of food and nutrients at a time of heightened global food demand. Increased food animal production to meet greater demand will generate more greenhouse gas emissions and excess animal waste. The U.S. food supply is generally secure, but is not immune to the costly and deadly shocks of continuing outbreaks of food-borne illness or to the constant threat of pests and pathogens to crops, livestock, and poultry. U.S. farmers and producers are at the front lines and will need more tools to manage the pressures they face. Science Breakthroughs to Advance Food and Agricultural Research by 2030 identifies innovative, emerging scientific advances for making the U.S. food and agricultural system more efficient, resilient, and sustainable. This report explores the availability of relatively new scientific developments across all disciplines that could accelerate progress toward these goals. It identifies the most promising scientific breakthroughs that could have the greatest positive impact on food and agriculture, and that are possible to achieve in the next decade (by 2030).
Rampant industrialization, urbanization, and population growth have resulted in increased global environmental contamination. The productivity of agricultural soil is drastically deteriorated and requires a high dose of fertilizers to cultivate crops. To ensure food security, farmers are compelled to apply excess chemical fertilizers and insecticides that contaminate soil, air, and water. Heavy loads of chemical fertilizers not only degrade the quality of agricultural land but also pollute water and air. Use of chemical fertilizers also accelerate the release of greenhouse gases like nitrous oxide and methane along with nutrient runoff from the watershed in to lower elevation rivers and lakes, resulting in cultural eutrophication. Farming practices globally in developed, developing, and under-developing countries should utilize and promote sustainable methods through viable combined environmental, social, and economic means that improve rather than harm future generations. This can include use of non-synthetic fertilizers like compost, vermicompost, slow-release fertilizers, farmyard manures, crop rotations that include nitrogen-fixing legumes. Organic fertilizers like compost and vermicompost improve soil properties like texture, porosity, water-holding capacity, organic matter, as well as nutrient availability. The purpose of this book is to document the available alternatives of synthetic fertilizers, their mode of action, efficiency, preparation methodology, practical suggestions for sustainable practices, and needed research focus. The book will cover major disciplines like plant science, environmental science, agricultural science, agricultural biotechnology and microbiology, horticulture, soil science, atmospheric science, agro-forestry, agronomy, and ecology. This book is helpful for farmers, scientists, industrialists, research scholars, masters and graduate students, non-governmental organizations, financial advisers, and policy makers.
Interest is growing in sustainable agriculture, which involves the use of productive and profitable farming practices that take advantage of natural biological processes to conserve resources, reduce inputs, protect the environment, and enhance public health. Continuing research is helping to demonstrate the ways that many factorsâ€"economics, biology, policy, and traditionâ€"interact in sustainable agriculture systems. This book contains the proceedings of a workshop on the findings of a broad range of research projects funded by the U.S. Department of Agriculture. The areas of study, such as integrated pest management, alternative cropping and tillage systems, and comparisons with more conventional approaches, are essential to developing and adopting profitable and sustainable farming systems.
Sustainable Agriculture under Drought Stress: Integrated Soil, Water and Nutrient Management seamlessly blends cutting-edge research with practical applications, offering a unique perspective on tackling this urgent challenge. Through a multidisciplinary lens, this book provides a cohesive and comprehensive understanding of both the current landscape and future prospects. Readers will find this book equips them with the knowledge and strategies required to manage soil nutrients and water effectively, ensuring the health of both soil and plants, especially in arid and semi-arid regions, where solutions are urgently needed. This book offers actionable insights into mitigating the impacts of climate change on agricultural systems, making it essential reading for anyone invested in sustainable land management and food security. - Clarifies mechanisms and proposes solutions for enhancing soil health and fertility, irrigation management, and crop production in drought-stressed environments - Presents a diverse array of options for responding to drought stress, optimizing plant health and furthering sustainability - Explores emerging cropping systems and opportunities
"Sustainability is at the heart of FAO's new Strategic Framework and is the specific focus of Strategic Objective 2, which aims at sustainably increasing the provision of goods and services from agriculture, forestry and fisheries. This report is the outcome of intensive consultations and discussions aimed at developing a common approach to FAO's work on sustainability. That process was conducted in a climate of cross-sectoral collaboration that drew on the contributions of leading FAO and external specialists in crops, livestock, forestry, capture fisheries, aquaculture and natural resources. The report provides the vision, the key principles and indications on the way forward to transition towards sustainable food and agriculture. It builds on the Organization's long experience in developing sustainability concepts, approaches and tools, and offers a common platform for a vision of the agriculture sector and of the inter-sectoral synergies that will eventually make agriculture more productive and sustainable."--Publisher's information.
An annotated bibliography of current books on sustainable and alternative agriculture. Entries include title, author, editor, publisher, and annotation. Indexed by author and editor. Includes update of current books for 1998.
Global climate change is bound to create a number of abiotic and biotic stresses in the environment, which would affect the overall growth and productivity of plants. Like other living beings, plants have the ability to protect themselves by evolving various mechanisms against stresses, despite being sessile in nature. They manage to withstand extremes of temperature, drought, flooding, salinity, heavy metals, atmospheric pollution, toxic chemicals and a variety of living organisms, especially viruses, bacteria, fungi, nematodes, insects and arachnids and weeds. Incidence of abiotic stresses may alter the plant-pest interactions by enhancing susceptibility of plants to pathogenic organisms. These interactions often change plant response to abiotic stresses. Plant growth regulators modulate plant responses to biotic and abiotic stresses, and regulate their growth and developmental cascades. A number of physiological and molecular processes that act together in a complex regulatory network, further manage these responses. Crosstalk between autophagy and hormones also occurs to develop tolerance in plants towards multiple abiotic stresses. Similarly, biostimulants, in combination with correct agronomic practices, have shown beneficial effects on plant metabolism due to the hormonal activity that stimulates different metabolic pathways. At the same time, they reduce the use of agrochemicals and impart tolerance to biotic and abiotic stress. Further, the use of bio- and nano-fertilizers seem to hold promise to improve the nutrient use efficiency and hence the plant yield under stressful environments. It has also been shown that the seed priming agents impart stress tolerance. Additionally, tolerance or resistance to stress may also be induced by using specific chemical compounds such as polyamines, proline, glycine betaine, hydrogen sulfide, silicon, β-aminobutyric acid, γ-aminobutyric acid and so on. This book discusses the advances in plant performance under stressful conditions. It should be very useful to graduate students, researchers, and scientists in the fields of botanical science, crop science, agriculture, horticulture, ecological and environmental science.