Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria

Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria

Author: Frans J. de Bruijn

Publisher: John Wiley & Sons

Published: 2016-07-13

Total Pages: 1472

ISBN-13: 1119004896

DOWNLOAD EBOOK

Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.


Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, 2 Volume Set

Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, 2 Volume Set

Author: Frans J. de Bruijn

Publisher: John Wiley & Sons

Published: 2016-09-06

Total Pages: 1460

ISBN-13: 1119004888

DOWNLOAD EBOOK

Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.


Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria

Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria

Author: Frans J. de Bruijn

Publisher: John Wiley & Sons

Published: 2016-07-01

Total Pages: 1464

ISBN-13: 1119004829

DOWNLOAD EBOOK

Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.


Stress-Induced Mutagenesis

Stress-Induced Mutagenesis

Author: David Mittelman

Publisher: Springer Science & Business Media

Published: 2013-03-12

Total Pages: 284

ISBN-13: 1461462800

DOWNLOAD EBOOK

The discovery of stress-induced mutagenesis has changed ideas about mutation and evolution, and revealed mutagenic programs that differ from standard spontaneous mutagenesis in rapidly proliferating cells. The stress-induced mutations occur during growth-limiting stress, and can include adaptive mutations that allow growth in the otherwise growth-limiting environment. The stress responses increase mutagenesis specifically when cells are maladapted to their environments, i.e. are stressed, potentially accelerating evolution then. The mutation mechanism also includes temporary suspension of post-synthesis mismatch repair, resembling mutagenesis characteristic of some cancers. Stress-induced mutation mechanisms may provide important models for genome instability underlying some cancers and genetic diseases, resistance to chemotherapeutic and antibiotic drugs, pathogenicity of microbes, and many other important evolutionary processes. This book covers pathways of stress-induced mutagenesis in all systems. The principle focus is mammalian systems, but much of what is known of these pathways comes from non-mammalian systems.


Regulation of Gene Expression by Small RNAs

Regulation of Gene Expression by Small RNAs

Author: Rajesh K. Gaur

Publisher: CRC Press

Published: 2009-04-27

Total Pages: 440

ISBN-13: 1420008706

DOWNLOAD EBOOK

New Findings Revolutionize Concepts of Gene FunctionEndogenous small RNAs have been found in various organisms, including humans, mice, flies, worms, fungi, and bacteria. Furthermore, it's been shown that microRNAs acting as cellular rheostats have the ability to modulate gene expression. In higher eukaryotes, microRNAs may regulate as much as 50 p


Regulation of Bacterial Virulence

Regulation of Bacterial Virulence

Author: Michael L. Vasil

Publisher: American Society for Microbiology Press

Published: 2012-12-05

Total Pages: 1189

ISBN-13: 1555816762

DOWNLOAD EBOOK

A comprehensive compendium of scholarly contributions relating to bacterial virulence gene regulation. • Provides insights into global control and the switch between distinct infectious states (e.g., acute vs. chronic). • Considers key issues about the mechanisms of gene regulation relating to: surface factors, exported toxins and export mechanisms. • Reflects on how the regulation of intracellular lifestyles and the response to stress can ultimately have an impact on the outcome of an infection. • Highlights and examines some emerging regulatory mechanisms of special significance. • Serves as an ideal compendium of valuable topics for students, researchers and faculty with interests in how the mechanisms of gene regulation ultimately affect the outcome of an array of bacterial infectious diseases.


Stress-Activated Protein Kinases

Stress-Activated Protein Kinases

Author: Francesc Posas

Publisher: Springer Science & Business Media

Published: 2008-01-24

Total Pages: 322

ISBN-13: 3540755691

DOWNLOAD EBOOK

In this book leading researchers in the field discuss the state-of-the-art of many aspects of SAPK signaling in various systems from yeast to mammals. These include various chapters on regulatory mechanisms as well as the contribution of the SAPK signaling pathways to processes such as gene expression, metabolism, cell cycle regulation, immune responses and tumorigenesis. Written by international experts, the book will appeal to cell biologists and biochemists.


Microbial Ecology and Infectious Disease

Microbial Ecology and Infectious Disease

Author: Eugene Rosenberg

Publisher: ASM Press

Published: 1999

Total Pages: 348

ISBN-13:

DOWNLOAD EBOOK

Recent research in microbial ecology has revealed new tools and new concepts which can stimulate medical microbiology. Similarly, some of the best research in microbial ecology has been carried out by medical microbiologists trying to understand how microorganisms survive and live in a particular ecological niche in the human body. This new volume emphasizes how interaction between these two disciplines can stimulate new research approaches and lead to unifying concepts. Experts review important new topics in microbiology, including quorum sensing, horizontal gene transfer in Vibrio cholerae, anthrax toxin, invasion mechanisms, bacterial bleaching of corals, response to starvation, cell–to–cell interactions, natural genetic engineering, and prions. Each chapter offers a general introduction to the topic, a specific introduction to the research, a critical evaluation of the most recent research on the subject, and a special section on unresolved questions and future research. The book also provides an up–to–date and comprehensive bibliography. Microbial Ecology and Infectious Disease contains a selection of some of the best recent research in microbial ecology and the mechanisms of infectious disease. It is valuable reading for teachers, students, and researchers in general microbiology, medical microbiology, and microbial ecology.


Bacterial Stress Responses

Bacterial Stress Responses

Author: Gisela Storz

Publisher: American Society for Microbiology Press

Published: 2010-11-16

Total Pages: 1167

ISBN-13: 1555816215

DOWNLOAD EBOOK

Gain new insight on utilizing bacterial stress responses to better combat bacterial infection with antibiotics and improve biotechnology. • Reviews the vast number of new findings that have greatly advanced the understanding of bacterial stress responses in the past 10 years. • Explores general regulatory principles, including the latest findings from genomics studies, including new research findings on both specific and general stress responses. • Details how stress responses affect the interactions between bacteria and host cells and covers bacterial stress responses in different niches and communities, with an emphasis on extreme environments.


Starvation in Bacteria

Starvation in Bacteria

Author: S. Kjelleberg

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 288

ISBN-13: 1489924396

DOWNLOAD EBOOK

Concerted efforts to study starvation and survival of nondifferentiating vegeta tive heterotrophic bacteria have been made with various degrees of intensity, in different bacteria and contexts, over more than the last 30 years. As with bacterial growth in natural ecosystem conditions, these research efforts have been intermittent, with rather long periods of limited or no production in between. While several important and well-received reviews and proceedings on the topic of this monograph have been published during the last three to four decades, the last few years have seen a marked increase in reviews on starvation survival in non-spore-forming bacteria. This increase reflects a realization that the biology of bacteria in natural conditions is generally not that of logarithmic growth and that we have very limited information on the physiology of the energy-and nutrient-limited phases of the life cyde of the bacterial cello The growing interest in nongrowing bacteria also sterns from the more recent advances on the molecular basis of the starvation-induced nongrowing bacterial cello The identification of starvation-specific gene and protein re sponders in Escherichia coli as weIl as other bacterial species has provided molecular handles for our attempts to decipher the "differentiation-like" responses and programs that nondifferentiating bacteria exhibit on nutrient limited growth arrest. Severallaboratories have contributed greatly to the progress made in life after-log research.