Accompanying CD-ROM, entitled Supplementary materials to Stratigraphy and geology of volcanic areas, includes three geologic maps in Adobe Acrobat PDF files.
The Aeolian Islands form one of the most active geological structures in the Mediterranean area, comprising a number of active (Stromboli and Vulcano) and dormant (Panarea and Lipari) volcanoes. They have attracted the attention of scientists in modern and historical times and are the cradle of the scientific discipline of volcanology. This Memoir provides information on geological features of the Aeolian Islands volcanoes at a regional scale and for each island. The stratigraphy, structural evolution, eruptive and magmatic history of the Islands is presented, along with the geodynamic setting of the Aeolian volcanism and implications for magma origin and evolution processes. Particular focus is given to the active and dormant volcanoes and the related natural hazards. It includes a DVD with new 1:10,000-scale geological maps of the Aeolian Islands and bathymetric maps of sectors of the Aeolian archipelago, together with an extended dataset of rock compositions.
This memoir is the first to review all of Antarctica’s volcanism between 200 million years ago and the Present. The region is still volcanically active. The volume is an amalgamation of in-depth syntheses, which are presented within distinctly different tectonic settings. Each is described in terms of (1) the volcanology and eruptive palaeoenvironments; (2) petrology and origin of magma; and (3) active volcanism, including tephrochronology. Important volcanic episodes include: astonishingly voluminous mafic and felsic volcanic deposits associated with the Jurassic break-up of Gondwana; the construction and progressive demise of a major Jurassic to Present continental arc, including back-arc alkaline basalts and volcanism in a young ensialic marginal basin; Miocene to Pleistocene mafic volcanism associated with post-subduction slab-window formation; numerous Neogene alkaline volcanoes, including the massive Erebus volcano and its persistent phonolitic lava lake, that are widely distributed within and adjacent to one of the world’s major zones of lithospheric extension (the West Antarctic Rift System); and very young ultrapotassic volcanism erupted subglacially and forming a world-wide type example (Gaussberg).
One of our aims in the book is to provide geologists with a sound basis for making their own well founded interpretations. For that reason we cover not only concepts about processes, and the nature of the products, but also methods and approaches that may be useful in analysing both modern and ancient successions. Most importantly, we treat the diversity of products in volcanic terrains as facies, and we use the method of facies analysis and interpretation as a means of constructing facies models for different volcanic settings. These models will, we hope, be useful as norms for comparison for workers in ancient terrains. The idea for this book came into being between 1981 and 1982 when J. V. W. came to Monash University to take up a Monash Postdoctoral Fellowship. During this period a short course on facies analysis in modern and ancient successions was put together, integrating J.V.W.'s extensive volcanological experience in numerous modern volcanic terrains with R.A.F.C.'s extensive sedimentological and volcanological experience in older volcanic and associated sedimentary successions in the Palaeozoic and Precambrian of Australia. The enthusiastic response from the participants to the first short course, taught in May 1982, and to subsequent annual re-runs, encouraged us to develop the short course notes into this book. The idea for both the short course and the book arose because we felt that there was no single source available that comprehensively attempted to address the problems of analysing, interpreting and understanding the complexity of processes, products and stratigraphy in volcanic terrains.
This book is a substantially updated, revised and extended version of the book Volcanic Successions, published by Cas and Wright back in 1987. Divided into six major parts, it offers comprehensive information on magma properties; fragmentation processes; subaerial and subaqueous lava types and field textures; sub-volcanic intrusions; explosive or pyroclastic eruptions and deposits; surface sedimentary processes; hydrothermal alteration and lithification, and effects on volcanic rock textures; terminology and approaches to describing and mapping volcanic rocks and terrains; geology of volcanoes and facies models; volcanism and tectonic setting; and to conclude, volcanic-hosted resources. It is a highly up-to-date text, presenting a coherent flow of topics, together with excellent visual material to illustrate key points and deposit features. The new authorship team consists of Ray Cas, Guido Giordano and John Wright, all of whom have extensive experience across the complete spectrum of volcanological processes and deposit types discussed in this exciting new book. The authors approach the diversity of products in volcanic terrains as facies, and use facies analysis and interpretation as a means of constructing facies models for different volcanic settings and their resources. The book is intended as a textbook and research reference book for senior undergraduate and graduate students, researchers and professionals alike.
Principles of Sequence Stratigraphy, Second Edition presents principles to practical workflow that guide applications in a consistent manner that is independent of model, geological setting and the types and resolution of the data available. The book explains the points of agreement and difference between the various approaches to sequence stratigraphy, while also defining the common ground that affords the standard application of the method. This enables the practitioner to avoid nomenclatural and methodological confusions and apply sequence stratigraphy. The text is richly illustrated with hundreds of full-color diagrams and examples of outcrop, borehole and seismic data. The book's balanced approach helps students and professionals acquire a sound understanding of the concepts and methodology. It will appeal to geologists, geophysicists and engineers with interest in basin analysis, stratigraphy and sedimentology, as well as in all economic applications that concern the exploration and production of natural resources, including water, hydrocarbons, coal and sediment-hosted mineral deposits. - Updates the award-winning first edition in all aspects of sequence stratigraphy, from the underlying theory to the practical applications - Presents the standard approach to sequence stratigraphic methodology, nomenclature, and classification; the role of modeling in sequence stratigraphy, and the difference between modeling and methodology - Discusses the roles of scale and stratigraphic resolution in sequence stratigraphy, and the workflow that affords a consistent application of the method irrespective of the types of data available - Describes the three-dimensional nature of the stratigraphic architecture, and the variability of stratigraphic sequences with the tectonic setting, depositional setting, and the climatic regime - Illustrates all concepts with high-quality, full-color diagrams, outcrop photographs, and subsurface well data and seismic images
Recently, recognition of the potential role of large igneous provinces in affecting ocean and atmosphere systems and biotic evolutionary pathways has lead to increased interest in this province. This has been further stimulated by the expansion in the search for oil and gas in Mesozoic and Tertiary sediments along the NE Atlantic Margin. An improved understanding of the interaction between igneous and sedimentary processes is vital for the identification of potential hydrocarbon resources.