Developing Charging Infrastructure and Technologies for Electric Vehicles

Developing Charging Infrastructure and Technologies for Electric Vehicles

Author: Alam, Mohammad Saad

Publisher: IGI Global

Published: 2021-12-31

Total Pages: 343

ISBN-13: 1799868605

DOWNLOAD EBOOK

The increase in air pollution and vehicular emissions has led to the development of the renewable energy-based generation and electrification of transportation. Further, the electrification shift faces an enormous challenge due to limited driving range, long charging time, and high initial cost of deployment. Firstly, there has been a discussion on renewable energy such as how wind power and solar power can be generated by wind turbines and photovoltaics, respectively, while these are intermittent in nature. The combination of these renewable energy resources with available power generation system will make electric vehicle (EV) charging sustainable and viable after the payback period. Recently, there has also been a significant discussion focused on various EV charging types and the level of power for charging to minimize the charging time. By focusing on both sustainable and renewable energy, as well as charging infrastructures and technologies, the future for EV can be explored. Developing Charging Infrastructure and Technologies for Electric Vehicles reviews and discusses the state of the art in electric vehicle charging technologies, their applications, economic, environmental, and social impact, and integration with renewable energy. This book captures the state of the art in electric vehicle charging infrastructure deployment, their applications, architectures, and relevant technologies. In addition, this book identifies potential research directions and technologies that facilitate insights on EV charging in various charging places such as smart home charging, parking EV charging, and charging stations. This book will be essential for power system architects, mechanics, electrical engineers, practitioners, developers, practitioners, researchers, academicians, and students interested in the problems and solutions to the state-of-the-art status of electric vehicles.


Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) Technologies

Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) Technologies

Author: Sekyung Han

Publisher: MDPI

Published: 2021-03-16

Total Pages: 112

ISBN-13: 3039434446

DOWNLOAD EBOOK

This Special Issue “Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) Technologies” was in session from 1 May 2019 to 31 May 2020. For this Special issue, we invited articles on current state-of-the-art technologies and solutions in G2V and V2G, including but not limited to the operation and control of gridable vehicles, energy storage and management systems, charging infrastructure and chargers, EV demand and load forecasting, V2G interfaces and applications, V2G and energy reliability and security, environmental impacts, and economic benefits as well as demonstration projects and case studies in the aforementioned areas. Articles that deal with the latest hot topics in V2G are of particular interest, such as V2G and demand-side response control technique, smart charging infrastructure and grid planning, advanced power electronics for V2G systems, adaptation of V2G systems in the smart grid, adaptation of smart cities for a large number of EVs, integration, and the optimization of V2G systems, utilities and transportation assets for advanced V2G systems, wireless power transfer systems for advanced V2G systems, fault detection, maintenance and diagnostics in V2G processes, communications protocols for V2G systems, energy management system (EMS) in V2G systems, IoT for V2G systems, distributed energy and storage systems for V2G, transportation networks and V2G, energy management for V2G, smart charging/discharging stations for efficient V2G, environmental and socio-economic benefits and challenges of V2G systems, and building integrated V2G systems (BIV2G). Five manuscripts are published in this Special Issue, including “An Ensemble Stochastic Forecasting Framework for Variable Distributed Demand Loads” by Agyeman et al., “Where Will You Park? Predicting Vehicle Locations for Vehicle-to-Grid, An MPC Scheme with Enhanced Active Voltage Vector Region for V2G Inverter” by Shipman et al., “Electric Vehicles Energy Management with V2G/G2V Multifactor Optimization of Smart Grids” by Xia et al., and “A Review on Communication Standards and Charging Topologies of V2G and V2H Operation Strategies” by Savitti et al.


E-Mobility in Europe

E-Mobility in Europe

Author: Walter Leal Filho

Publisher: Springer

Published: 2015-04-27

Total Pages: 396

ISBN-13: 331913194X

DOWNLOAD EBOOK

Focusing on technical, policy and social/societal practices and innovations for electrified transport for personal, public and freight purposes, this book provides a state-of-the-art overview of developments in e-mobility in Europe and the West Coast of the USA. It serves as a learning base for further implementing and commercially developing this field for the benefit of society, the environment and public health, as well as for economic development and private industry. A fast-growing, interdisciplinary sector, electric mobility links engineering, infrastructure, environment, transport and sustainable development. But despite the relevance of the topic, few publications have ever attempted to document or promote the wide range of electric mobility initiatives and projects taking place today. Addressing this need, this publication consists of case studies, reports on technological developments and examples of successful infrastructure installation in cities, which document current initiatives and serve as an inspiration for others.


Three Revolutions

Three Revolutions

Author: Daniel Sperling

Publisher: Island Press

Published: 2018-03

Total Pages: 253

ISBN-13: 161091905X

DOWNLOAD EBOOK

Front Cover -- About Island Press -- Subscribe -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- 1. Will the Transportation Revolutions Improve Our Lives-- or Make Them Worse? -- 2. Electric Vehicles: Approaching the Tipping Point -- 3. Shared Mobility: The Potential of Ridehailing and Pooling -- 4. Vehicle Automation: Our Best Shot at a Transportation Do-Over? -- 5. Upgrading Transit for the Twenty-First Century -- 6. Bridging the Gap between Mobility Haves and Have-Nots -- 7. Remaking the Auto Industry -- 8. The Dark Horse: Will China Win the Electric, Automated, Shared Mobility Race? -- Epilogue -- Notes -- About the Contributors -- Index -- IP Board of Directors


Alternative Fuels and Their Utilization Strategies in Internal Combustion Engines

Alternative Fuels and Their Utilization Strategies in Internal Combustion Engines

Author: Akhilendra Pratap Singh

Publisher: Springer Nature

Published: 2019-10-10

Total Pages: 332

ISBN-13: 9811504180

DOWNLOAD EBOOK

This book covers alternative fuels and their utilization strategies in internal combustion engines. The main objective of this book is to provide a comprehensive overview of the recent advances in the production and utilization aspects of different types of liquid and gaseous alternative fuels. In the last few years, methanol and DME have gained significant attention of the energy sector, because of their capability to be utilized in different types of engines. This book will be a valuable resource for researchers and practicing engineers alike.


Transitions to Alternative Vehicles and Fuels

Transitions to Alternative Vehicles and Fuels

Author: National Research Council

Publisher: National Academies Press

Published: 2013-04-14

Total Pages: 395

ISBN-13: 0309268524

DOWNLOAD EBOOK

For a century, almost all light-duty vehicles (LDVs) have been powered by internal combustion engines operating on petroleum fuels. Energy security concerns about petroleum imports and the effect of greenhouse gas (GHG) emissions on global climate are driving interest in alternatives. Transitions to Alternative Vehicles and Fuels assesses the potential for reducing petroleum consumption and GHG emissions by 80 percent across the U.S. LDV fleet by 2050, relative to 2005. This report examines the current capability and estimated future performance and costs for each vehicle type and non-petroleum-based fuel technology as options that could significantly contribute to these goals. By analyzing scenarios that combine various fuel and vehicle pathways, the report also identifies barriers to implementation of these technologies and suggests policies to achieve the desired reductions. Several scenarios are promising, but strong, and effective policies such as research and development, subsidies, energy taxes, or regulations will be necessary to overcome barriers, such as cost and consumer choice.


Overcoming Barriers to Electric-vehicle Deployment

Overcoming Barriers to Electric-vehicle Deployment

Author: National Research Council

Publisher:

Published: 2013

Total Pages: 0

ISBN-13: 9780309284486

DOWNLOAD EBOOK

The electric vehicle offers many promises--increasing U.S. energy security by reducing petroleum dependence, contributing to climate-change initiatives by decreasing greenhouse gas (GHG) emissions, stimulating long-term economic growth through the development of new technologies and industries, and improving public health by improving local air quality. There are, however, substantial technical, social, and economic barriers to widespread adoption of electric vehicles, including vehicle cost, small driving range, long charging times, and the need for a charging infrastructure. In addition, people are unfamiliar with electric vehicles, are uncertain about their costs and benefits, and have diverse needs that current electric vehicles might not meet. Although a person might derive some personal benefits from ownership, the costs of achieving the social benefits, such as reduced GHG emissions, are borne largely by the people who purchase the vehicles. Given the recognized barriers to electric-vehicle adoption, Congress asked the Department of Energy (DOE) to commission a study by the National Academies to address market barriers that are slowing the purchase of electric vehicles and hindering the deployment of supporting infrastructure. As a result of the request, the National Research Council (NRC)--a part of the National Academies--appointed the Committee on Overcoming Barriers to Electric-Vehicle Deployment. This committee documented their findings in two reports--a short interim report focused on near-term options, and a final comprehensive report. Overcoming Barriers to Electric-Vehicle Deployment fulfills the request for the short interim report that addresses specifically the following issues: infrastructure needs for electric vehicles, barriers to deploying the infrastructure, and possible roles of the federal government in overcoming the barriers. This report also includes an initial discussion of the pros and cons of the possible roles. This interim report does not address the committee's full statement of task and does not offer any recommendations because the committee is still in its early stages of data-gathering. The committee will continue to gather and review information and conduct analyses through late spring 2014 and will issue its final report in late summer 2014. Overcoming Barriers to Electric-Vehicle Deployment focuses on the light-duty vehicle sector in the United States and restricts its discussion of electric vehicles to plug-in electric vehicles (PEVs), which include battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). The common feature of these vehicles is that their batteries are charged by being plugged into the electric grid. BEVs differ from PHEVs because they operate solely on electricity stored in a battery (that is, there is no other power source); PHEVs have internal combustion engines that can supplement the electric power train. Although this report considers PEVs generally, the committee recognizes that there are fundamental differences between PHEVs and BEVs.


Plug-In Electric Vehicles

Plug-In Electric Vehicles

Author: David B. Sandalow

Publisher: Rowman & Littlefield

Published: 2009-09-01

Total Pages: 281

ISBN-13: 0815703481

DOWNLOAD EBOOK

Plug-in electric vehicles are coming. Major automakers plan to commercialize their first models soon, while Israel and Denmark have ambitious plans to electrify large portions of their vehicle fleets. No technology has greater potential to end the United States' crippling dependence on oil, which leaves the nation vulnerable to price shocks, supply disruptions, environmental degradation, and national security threats including terrorism. What does the future hold for this critical technology, and what should the U.S. government do to promote it? Hybrid vehicles now number more than one million on America's roads, and they are in high demand from consumers. The next major technological step is the plug-in electric vehicle. It combines an internal combustion engine and electric motor, just as hybrids do. But unlike their precursors, PEVs can be recharged from standard electric outlets, meaning the vehicles would no longer be dependent on oil. Widespread growth in the use of PEVs would dramatically reduce oil dependence, cut driving costs and reduce pollution from vehicles. National security would be enhanced, as reduced oil dependence decreases the leverage and resources of petroleum exporters. Brookings fellow David Sandalow heads up an authoritative team of experts including former government officials, private-sector analysts, academic experts, and nongovernmental advocates. Together they explain the current landscape for PEVs: the technology, the economics, and the implications for national security and the environment. They examine how the national interest could be served by federal promotion and investment in PEVs. For example, can tax or procurement policy advance the cause of PEVs? Should the public sector contribute to greater research and development? Should the government insist on PEVs to replenish its huge fleet of official vehicles? Plug-in electric vehicles are coming. But how soon, in what numbers, and to what effect? Feder


Electric Mobility in Public Transport—Driving Towards Cleaner Air

Electric Mobility in Public Transport—Driving Towards Cleaner Air

Author: Krzysztof Krawiec

Publisher: Springer Nature

Published: 2021-04-22

Total Pages: 218

ISBN-13: 3030674312

DOWNLOAD EBOOK

This book addresses various aspects of electric mobility deployment in public transport. These include transport policy-related issues as well as technical, organizational and technical dimensions of the fleet conversion process (from conventional one towards the increased share of electric vehicles in public transport). In the book, one may find, e.g. the determinants for the successful functioning of electrified transport systems (including charging facilities), models and methods for battery electric bus energy consumption, the analysis regarding the charging strategies (including power-grid) as well as electric vehicle battery issues. As the process of fleet conversion is multi-faceted, the book also contains the issues related to cybersecurity in public transport, autonomous vehicles and hyperloop. The book is dedicated to transport professionals, consulting companies and researchers in the field of electromobility and modern transport systems.